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EXECUTIVE SUMMARY 
 

Agility in tactical decision-making and mission management is a key attribute for enabling teams 
of heterogeneous unmanned vehicles (UxV) to successfully manage the “fog of war” with its 
inherently complex, ambiguous, and time-challenging conditions. This agility requires effective 
operator-autonomy teaming including the achievement of trusted collaboration and the flexible, 
high-level tasking required for team task sharing and decision superiority. A tri-service team has 
conducted Assistant Secretary of Defense for Research and Engineering (ASD/R&E)-sponsored 
research focused on instantiating an “Intelligent Multi-UxV Planner with Adaptive 
Collaborative/Control Technologies” (IMPACT) by combining flexible play calling for task 
delegation, bi-directional human-autonomy interaction, advanced cooperative control algorithms, 
intelligent agent reasoning, and autonomic technologies to enable effective single operator 
command and control (C2) of cooperative multi-UxV missions (Figure 1). IMPACT operators, 
with intelligent assistance, were able to task and manage a total of 12 UxV (4 air, 4 ground, and 
4 sea surface vehicles) in response to several unexpected events that arose during simulated 
ongoing base perimeter defense missions. This executive summary provides a brief introduction 
to the main features of the IMPACT system, while the rest of this report provides detailed 
descriptions of all research aspects associated with this project.  
 

 
 

Figure 1: IMPACT Control Station Prototype 
 

Interfaces for Operator-Autonomy Teaming  
 

IMPACT’s displays and controls (Figure 2) feature video game inspired pictorial icons that 
present information in a concise, integrated manner to facilitate retrieval of the 
states/goals/progress for multiple systems and support direct perception and manipulation 
principles. Multi-modal controls (speech, touch, and mouse) augment a “playbook” delegation 
architecture and enable seamless transition between control states (from manual to fully 
autonomous). With this adaptable automation scheme, the operator retains authority and 
decision-making responsibilities that help avoid “automation surprises” (Calhoun, Ruff, 
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Behymer, & Frost, 2017). By supporting a range of interactions, flexible operator-autonomy 
teamwork enables agility while responding to a dynamic mission environment. At one extreme, 
the operator can manually control UxV movement or build plays from the ground up, specifying 
detailed parameters. At the other extreme, the operator can quickly task one or more UxVs by 
only specifying play type and location with an intelligent agent determining all other parameters. 
For example, when an IMPACT operator calls a play to achieve air surveillance on a building, 
the intelligent agent recommends a UxV to use (based on estimated time enroute (ETE), fuel use, 
environmental conditions, etc.), a cooperative control algorithm provides the shortest route to get 
to the building (taking into account no-fly zones, etc.), and an autonomics framework monitors 
the play’s ongoing status (e.g., alerting if the UxV won’t arrive at the building on time). 
IMPACT’s play calling interfaces also facilitate operator-agent communication on mission 
details to optimize play parameters (e.g., target size and current visibility) as well as supporting 
operator/autonomy shared awareness (e.g., illustrated by a display showing the tradeoffs 
associated with multiple agent-generated courses of actions across mission parameters). Play 
progress is depicted in a matrix display reflecting autonomics monitoring and a tabular interface 
aids play management (e.g., allocation of assets across plays). Additional detail on all the play-
related interfaces is available (Calhoun, Ruff, Behymer, & Mersch, 2017). 
 

 
 

Figure 2: IMPACT Operator-Autonomy Interfaces  
 

Intelligent Agent Framework for Course of Action Generation 
 

UxV allocation, tasking, and management capabilities were provided in IMPACT via an 
intelligent agent that was developed using the Cognitively Enhanced Complex Event Processing 
(CECEP) framework. This capability allows for an operator to communicate high-level details 
about a desired play call such as location or optimization criteria (e.g., time, fuel). In response, 
the agent provides the operator with a ranked set of courses of action (COAs) that were 
formulated based on low-level task details. This approach was expected to alleviate workload 
burden of the operator by having the autonomy focus on the low-level details while allowing the 
operator to tend to higher level mission objections.   
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 CECEP is a complex event processing framework with extended procedural and domain 
knowledge aspects. Agents that use procedural knowledge were developed using a discrete finite 
state machine called behavior models that include states and transitions between states that are 
guarded by patterns. A pattern language called Esper was used to match complex patterns of 
operator and UxV behaviors to transition states at runtime. Behavior models were used to 
produce behaviors (e.g., feedback for the operator or UxV play execution). Agents that use 
domain knowledge were developed using cognitive domain ontologies (CDOs). A CDO is a 
rooted tree structure with features that are connected via relations. CDOs can be processed using 
the artificial intelligence process of constraint satisfaction to produce configurations, possible 
worlds, or COAs. In IMPACT, CDOs were developed to capture the domain for UxV play 
calling and produce COAs for play to vehicle(s) assignment. 
 
UxAS Routing Algorithms 
 

Current ground control stations for unmanned vehicles provide relatively low levels of 
autonomy, e.g. automatically commanding an assigned vehicle to follow a sequence of 
waypoints generated by a human operator. To increase the level of autonomy of UxVs, the 
Unmanned Systems Autonomy Services (UxAS) software architecture provides flexible and 
adaptive automated path planning, sensor steering, and inter-vehicle coordination for unmanned 
air, ground, and surface vehicles. UxAS consists of a collection of modular services that interact 
via a common message passing architecture, which makes it easy to add new services. Currently, 
UxAS provides approximately 50 services that automate vehicle route planning and sensor 
steering, coordinate behavior between cooperating vehicles, connect with external software and 
hardware devices, validate mission requests, log and diagram message traffic, and optimize play 
ordering with respect to total time required or distance traveled.  

More specifically, UxAS provides services that automatically generate waypoints and 
sensor steering commands for search and surveillance plays over points, lines, and areas, with 
many tunable parameters. UxAS also provides services that generate routes between plays based 
on vehicle type, e.g. so that ground vehicles stay constrained to roads. In addition to services that 
plan static routes, UxAS provides services that can update routes and sensor steering commands 
adaptively online, including for teams of cooperating vehicles. In general, UxAS services plan 
vehicle routes that account for factors such as regulatory “no-fly zones,” physical boundaries 
such as roads and terrain, and kinematic vehicle constraints such as minimum turn radius. In 
IMPACT, the intelligent agent queries UxAS about the cost of routes needed to perform a play 
and uses the information to help determine which vehicles to assign. The appropriate UxAS 
services then carry out execution of the play by implementing routing, sensor steering, inter-
vehicle coordination, and online adaptation during play execution. 
 
Autonomics and Task Management 
 

Autonomic approaches manage complex systems such that they exhibit self-adaptation in 
response to demands on the system or degradation of performance. One such autonomics 
approach is the Rainbow autonomics framework, developed at Carnegie Mellon University 
(CMU). Rainbow can manage systems that can be described as networks within the network 
model held within the framework. In IMPACT, the control team made up of humans and 
autonomous assistants was modeled as a network of servers that work tasks from task queues. 
Inherent in the autonomics framework are probes, gauges, and strategies. Probes read data from 
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the underlying system, gauges aggregate that data, and strategies manipulate the network to 
improve performance. 

Task manager capability includes the automatic generation of tasks from event 
information. By reading event information (e.g., from chat messages), the task manager 
generates tasks and parses out necessary information to aid in the completion of the task. Task 
guided human machine interfaces (HMI) help users complete tasks (e.g., calling plays) by 
making calls to appropriate tools within IMPACT and prepopulating with data from the events. 
Tasks can be directed towards autonomous assistants that are capable of completing some tasks, 
and queue management tools are provided to the operator. 
 
Fusion and the Distributed Architecture and Services 
 

Fusion is a software framework that enables natural human interaction with flexible and 
adaptable automation. A distributed service oriented architecture is employed that is composed 
of multiple disparate systems, unified representationally through negotiated communications 
protocols and physically through a common communications hub. The decentralization of the 
architecture enables logging, monitoring, and substitution of components with minimal effect on 
other components. Thus, several different systems can indirectly interact with one another 
through a publish/subscribe hub to provide a greater service to the user. All connected pieces 
communicate through a common messaging protocol to send and receive information. Connected 
services developed for IMPACT include intelligent agent reasoning among disparate domain 
knowledge sources, autonomics monitoring services, intelligent aids to the operator, cooperative 
planners, and advanced simulation via instrumented, goal oriented operator interfaces. The 
distributed architecture along with an extensible software framework enables the system to be 
expanded for other human-automation research.  
 The Fusion architecture includes the core (customizable) aspects that are common across 
applications as well as features that support the IMPACT project. The Fusion test bed also 
displays the scenario environment, presents mission events that prompt UxV management tasks, 
provides a workspace for the operator to team with autonomy to complete tasks, and records task 
performance measures. Other IMPACT specific components provide interfaces for calling and 
modifying plays, viewing agent generated candidate COAs, and presenting the results of an 
autonomics service monitoring play progress. 
 
Operator-in-the-Loop Evaluation of Operator-Autonomy Teamwork 
 

A high-fidelity human-in-the-loop simulation evaluation was used to compare the IMPACT 
prototype to a baseline system that represented the current state-of-the-art at the beginning of the 
effort. The baseline system included a subset of IMPACT’s capabilities such as the route planner 
and an associated interface. However, the baseline system lacked agent assistance, plan 
monitoring, and speech control. The experimental design was a 2 (Baseline, IMPACT) x 2 (low, 
high mission complexity) within-participant design with the order of conditions blocked by 
system (half of the participants used IMPACT first, the other half with Baseline) and 
counterbalanced across task complexity. Mission complexity was manipulated by varying the 
number and timing of tasks. Each of eight participants (all familiar with base defense and/or 
unmanned vehicle operations) performed four 60-minute base defense missions. Participants 
completed a variety of defense mission related tasks involving twelve simulated UxV. 
Participants’ task performance was better on multiple mission performance metrics with the 
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IMPACT system in comparison to the baseline system. Participants were also able to execute 
plays using significantly fewer control inputs with IMPACT as compared to baseline. The 
overall usability of each system was assessed using the System Usability Scale (SUS; Brooke, 
1996). Participants rated IMPACT higher than baseline on all ten SUS items and the overall SUS 
score was significantly higher with IMPACT than with baseline. Participants also subjectively 
rated IMPACT significantly better than baseline in terms of its perceived value to future UxV 
operations as well as its ability to aid workload. In fact, every participant gave IMPACT the 
highest possible score for potential value, and all but one participant gave IMPACT the highest 
possible score for its ability to aid workload.  
 
Outcomes and Way Ahead 
 

The IMPACT project produced significant knowledge in a number of areas important to 
autonomy-related capabilities (see Appendix A for a listing of the many publications generated 
from this effort). Not only did the project spur advancements in component technology 
development, model development, and general design understanding/guidance, but much was 
learned from the integration of key autonomy-related technologies into a single multi-UxV 
control station application. IMPACT also produced a robust Department of Defense (DoD) 
“virtual lab” for continued human-autonomy teaming research. This was a key objective of the 
Autonomy Research Pilot Initiative (ARPI) process. A three station system (C2, Sensor Operator 
(SO), & Test Operator Console (TOC)) is available for organic wide-spectrum human-autonomy 
teaming (HAT) evaluations with sites currently at the Air Force Research Lab (AFRL), the 
Space and Naval Warfare Systems Command (SPAWAR), and the Army Research Lab (ARL). 
A new vision for future human-autonomy systems was successfully conveyed to DoD senior 
leadership via many interactive demonstrations of the IMPACT system. This vision clearly 
illustrates that the human will continue to have a prominent role in interacting with increasingly 
autonomous technology, dynamically flexing between supervisor, teammate, or manual 
controller as conditions dictate. Finally, IMPACT technologies have extended/transitioned in a 
myriad of ways. Other ARPI projects have leveraged IMPACT technology to advance their aims 
while new DoD projects (including Joint Capability Technology Demonstration (JCTD) support 
efforts and Defense Advanced Research Projects Agency (DARPA) programs) and several 
industry contractors now utilize IMPACT in autonomy technology development efforts. 
Additionally, IMPACT has become the core C2 autonomy piece within the TTCP Autonomy 
Strategic Challenge which is a 3-year, 5 nation effort to integrate and assess promising allied 
autonomy capability in mixed live/virtual multi-UxV littoral environments.  

The IMPACT project has enabled a deeper exploration into the critical issues that influence 
flexible and effective human-autonomy collaboration. Although the IMPACT evaluation 
demonstrated value in several aspects related to operator-autonomy teaming, several deficiencies 
and gaps in understanding were also identified and improvements are underway. These include 
research related to novel methods for enabling bi-directional communication and management of 
temporal constraints, more naturalistic dialogue and sketch interactions, and consideration of 
information uncertainty in decision-making tasks. Additionally, research is investigating the 
effects of a decentralized replanning capability, real-time operator functional state assessment, 
and alternative team structures on overall human-autonomy teaming. The results of these follow-
on efforts will provide a much richer understanding of this area.   
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1 BACKGROUND AND PROJECT OBJECTIVES 
 

Future manned and heterogeneous unmanned forces must be able to work increasingly as agile 
synchronous teams to complete tactical reconnaissance, surveillance, and target acquisition 
(RSTA) related missions in complex, ambiguous, and dynamically changing environments. 
Advanced and highly reliable autonomous behavior and multi-unmanned vehicle (UxV) 
cooperative control planning algorithms will be required that are far beyond the capability of 
currently fielded systems. Therefore, rather than a rapid switch from current operations to fully 
functional autonomous cooperative RSTA teams, the likely transition path will involve 
incrementally fielding component autonomous behaviors as they are developed, with overall 
autonomous capability increasing over time. Thus a key challenge is, with the addition of 
incremental and imperfect autonomous behaviors, how best to ensure flexible, robust mission 
effectiveness across a wide range of situations and with the many ambiguities associated with the 
"fog of war”.  

Mission effectiveness will rely on increased agility: the rapid identification and 
management of uncertainties that can disrupt or degrade an autonomous team’s ability to safely 
complete complex missions. Agility is especially critical to robust team decision making in 
highly challenging and rapidly evolving situations. One promising method for increasing agility 
over the long term is integration of intelligent agent, autonomics, and machine-learning 
technologies such that autonomous control technology “gets smarter” and thus more resilient 
over time. This is especially valuable for distributed, platform-centered autonomy. A 
complimentary method that is potentially far more powerful in the near-term (when 
communications links are maintained) is to establish an intuitive and effective dialog between 
the human team member and emerging autonomy. With this method, strengths of each can be 
maximally utilized to resolve ambiguities and achieve decision superiority, with autonomy being 
increasingly unleashed as trust in gained in these operations. Many researchers are exploring 
critical autonomy components (intelligent agents, machine learning, cooperative control 
planners, human autonomy interfaces, etc.) in isolation. The novelty of this project was that it 
integrated these approaches to explore, at a systems level, the best mix of adaptive technologies 
for realizing near-term RSTA team autonomy. 

A vision that underlies IMPACT system design is conveyed in Figure 3. A black 
silhouette of a human operator is positioned in the upper left-hand side of the graphic. This 
operator is purposely not in the center of the picture, but rather placed toward the top edge of the 
system, to represent a supervisor that is more often “on the loop” versus continually “in the 
loop”. The operator is managing multiple unmanned assets in a tactical area, and these assets are 
heterogeneous (air, sea and ground platforms) versus homogeneous platforms. The operator is 
interfacing with these systems through an advanced graphical interface, using multimodal 
methods including speech and touch for rapid, intuitive inputs. The operator can “see through” 
the interface to the environment itself, which again speaks to the need for interface design to 
allow for transparency into the plans and activities of autonomy. Lastly, machine intelligence is 
represented by the blue electronic avatar brain in the lower left-hand side of the graphic. This 
digital assistant is constantly monitoring and reasoning over the platforms, environment, and 
mission in order to assist the operator in situation assessment, decision making, and action 
execution. The human and machine intelligence are grouped to the left of the graphic to represent 
the need for “teaming” and naturalistic interaction between the two.  
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Figure 3: A Vision for Human-Autonomy Teaming 
 

The overall objective of this project was to achieve flexible operational agility and 
resilience in developing autonomous behavior for UxV RSTA teams. A multidisciplinary, tri-
service team developed and evaluated “Intelligent Multi-UxV Planner with Adaptive 
Collaborative/Control Technologies (IMPACT)”. This new human-autonomy teaming capability 
combined flexible, goal-oriented “play” calling and human-autonomy interaction with intelligent 
agents and cooperative control algorithms that provided near-optimal task assignment and path 
planning solutions as well as adaptive/reactive capability. A key principle in the development of 
IMPACT algorithms was to be transparent, agile, and resilient.  

The effort had four major objectives. Each was informed by and leveraged the others 
throughout the project’s timeframe.  

1. Increase robustness and transparency of autonomous control by expanding the 
capabilities of UxV cooperative control planning algorithms and optimization logic. 
2. Advance state of the art for developing adaptive and reactive autonomous tactics through 
intelligent agent and machine learning approaches.  
3. Identify and validate intuitive and adaptive interaction methods for human-autonomy 
dialog and novel displays for transparency into the autonomous behavior.  
4. Integrate all component technologies into the IMPACT architecture and evaluate; 
compare against existing models and current state of the art for RSTA missions.  
5. An additional objective was to leave behind a tri-service multi-UxV control station 
simulation testbed that incorporates IMPACT technology for continued human-autonomy 
research, development and transition.  

 
Simultaneously developing a multi-UxV controller along with multiple candidate adaptive 

dynamic planning solutions ensures a thorough exploration of the relative influence and 
associated interdependencies of these technologies. Emerging IMPACT-related capabilities 
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strive to maximize the robustness of incremental increases of autonomous behavior into RSTA 
teams, enabling unmanned systems to expand beyond supporting independent, disjointed tasks to 
more fluid, cooperative and harmonious actions that are goal oriented versus task oriented. This 
will maximize desired mission effects and assist in achieving decision superiority. 
 
2 IMPACT OVERVIEW AND OVERALL TECHNICAL APPROACH  
 

The IMPACT project was one of seven ARPI projects sponsored by the Office of Secretary of 
Defense for ASD/R&E. Over a 3-year period, a tri-service team (AFRL, SPAWAR, ARL & 
Navy Research Lab (NRL)) conducted research, development and integration of multiple 
autonomy-related technologies to enable single operator management of cooperative multi-UxV 
missions (Figure 4). Novel operator interfaces were also designed and evaluated to support the 
operator’s ability to continually observe and direct autonomy components.  
 

 
 

Figure 4: IMPACT Research Components with Associated Service Lab Contributions 
 

The key to IMPACT was the simultaneous development, integration and assessment of 
several candidate agility tools to combat many “fog of war” events that can threaten mission 
success. By increasing both the human’s and autonomy’s ability to be agile to unexpected 
change, overall mission effectiveness can potentially be sustained across a wide range of 
contexts. By studying these technologies and their interactions concurrently, a robust and 
feasible solution set can be identified for real-world operations. With IMPACT, explorations 
began towards an effective balance between human/autonomy, global/local mission 
management, and designed/learning systems that adapts with evolving situations for a base 
security management application.  

The core capability of IMPACT consists of a multi-UxV control station with cooperative 
control algorithm for tactical mission routing, intelligent agents for reasoning over domain 
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knowledge for asset allocation and determining opportunities for action, an autonomics system to 
automatically monitor ongoing plans, and a human machine interface to couple human and 
machine capabilities. The human operator retains a spectrum of control from high level 
supervisor to manual controller, dependent upon context. It is from this core capability that 
extensions in platform autonomy, mission set, and environmental context can grow.  

In addition to the overall objectives listed above, many detailed research challenges 
across several disciplines were addressed in the IMPACT project. A partial list is presented 
below. 

• cognitively-based methods for dynamic agent reasoning 
• agent-based C2 decision support tools 
• flexible, transparent, and reactive cooperative control algorithms 
• intuitive interfaces for human management of multiple autonomous assets 
• models, methods, and guidelines for achieving agent transparency  
• methods to acquire and manage incoming tasking  
• use of autonomics for monitoring/managing play execution 
• real-time predictive model of human operator automation monitoring  
• automated verification and synthesis of mission plans for UxV teams 
• machine learning of UxV tactics through human evaluation 
• machine learning for task generation  

 
The general approach to technical development was to mix component technology 

research and development with periodic integration and spiral system testing of the most mature 
components. First, a tri-service challenge scenario was agreed to. The application chosen was 
base perimeter defense, as this provided 1) a RSTA environment that is relevant to all DoD 
services, 2) a realistic challenge scenario for tasking of heterogeneous air/sea/ground unmanned 
assets, and 3) supports a wide range of possible events to demonstrate agility. Cognitive task 
analyses were then conducted with subject matter experts to define key tasks, decision points, 
and information requirements. Next, a service based system architecture and associated play 
sequencing was derived to underlie testbed development. Throughout, component technology 
development occurred (Figure 4), with significant cross-talk and increasing integration being 
promoted as the project matured. Lastly, two spiral evaluations occurred in the project to assess 
the military utility of the resulting IMPACT system prototype. 
 
3 DETAILED TECHNICAL APPROACH: INTEGRATED SYSTEM COMPONENTS  
 

The technology components that were successfully integrated into the IMPACT system testbed 
over a three-year period are described below. Note that although the technology components are 
ordered separately, the key to this project was the understanding gained through the interaction 
of these technologies within a military mission application. Thus the first component to be 
discussed is the Fusion Framework, which underlies the entire IMPACT system.  
 
3.1 Fusion Framework 
 

3.1.1 Motivation and Challenges 
 

Robust autonomy-based frameworks enable evaluation of cooperation and coordination among 
widely disparate platforms such as remotely piloted aircraft (RPAs) and autonomous unmanned 
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systems such as ground, air, and maritime entities. Tying these interactions into an immersive 
HMI improves evaluation of user behaviors and confidence in a low-risk environment. However, 
a unique challenge exists in unification of operator interactions, autonomous platforms, and 
intelligent aids. A common drive is to push towards more autonomy, diminishing the operator’s 
involvement. Operators can provide useful information to autonomous systems, and autonomy 
can be used to augment operator capabilities, so an alternative is to develop and support 
symbiosis between the two. This symbiosis can be realized via a robust framework that provides 
user-tunable accessibility into this autonomy. This enables evaluation of user comfort, trust, and 
confidence with autonomous components. The associated ability to tune autonomy also drives 
future requirements for HMI design and accessibility (excerpt from Rowe, 2015). 

To address the complexities involved in providing a common environment to explore 
these motivations and challenges, the Fusion Framework was developed. Fusion is a framework 
that enables natural human interaction with flexible and adaptive automation. It employs 
multiple components: intelligent agents that reason among disparate domain knowledge sources 
(Douglass, 2013); machine learning that provide monitoring services and aids to the operator 
(Vernacsics, 2013); cooperative planners (Kingston, 2009); and advanced simulation via an 
instrumented, goal-oriented operator interface (Miller, 2012). These empower experimentation 
and technology advancement across multiple systems (see Figure 5).  
 

 
 

Figure 5: Fusion High Level Framework 
 
3.1.2 Software and Hardware Acquisitions 
 

The Fusion Framework was built with extensibility, maintainability, and commonality at the core 
fundamental level utilizing state of the art software development tools and processes consisting 
of the following: 

1. Microsoft Windows 10 Operating System 
2. Microsoft DotNet version 4.6.1 
3. Microsoft Visual Studio 2015 
4. Microsoft C# and Managed C++ Programming Languages 
5. JetBrains ReSharper Code Analysis Tools 
6. JetBrains YouTrack Agile Requirements Management 
7. JetBrains TeamCity Build Management System 

 
The hardware consists of high performance computing Microsoft Windows-based 

platforms. The Fusion Framework utilizes a services oriented architecture enabling components 
to be distributed across a distributed computing platform. The operator stations require a high-
end graphics card such as the nVidia Quadro 4000 or higher series. Representative computing 
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devices include the Dell Precision T7910 series, high-resolution touch screen Liquid Crystal 
Displays (LCDs) such as the Acer T272HUL Light Emitting Diode (LED) Touchscreen (2560 X 
1440) and the Sharp PN-K322B 4K Ultra-HD LCD Touchscreen (3840 x 2160 resolution). To 
help facilitate development across all associated laboratories, a common hardware setup was 
procured.  
 
3.1.3 Development and Implementation 
 

3.1.3.1 Distributed Virtual Laboratory 
 

The notion of a virtual distributed laboratory (VDL) connecting various DoD and contractor sites 
throughout the Continental United States is paramount to foster a more cohesive and distributed 
development and research environment. Fusion adopted a DoD open source model, enabling 
joint development across a variety of projects and collaborators, all contributing to a single 
source repository. The core development team is located at AFRL, and there are currently several 
offsite laboratory development teams. Fusion is hosted on a secure web server (VDL) and 
program access can be requested at https://www.vdl.afrl.af.mil/. 
 
3.1.3.2 Software Development Approach 
 

The Fusion software development team leverages SCRUM, an agile software development 
process (see Figure 6). The Fusion source code repository is hosted on VDL and a strict 
configuration management process is followed. Once a week, offsite developers submit their 
changes, and the core Fusion team integrates those changes and posts a new version of Fusion on 
VDL for the offsite developers and research team. Source code is managed through Git (a 
software configuration repository structure) using the Defense Research & Engineering Network 
(DREN). This process allows all offsite laboratories to keep up to date with the core Fusion team 
as well as keep their software well maintained.  
 

 
 

Figure 6: SCRUM Agile Software Development Cycle 
 
3.1.3.3 Flexible Software Architecture 
 

The Fusion Framework consists of a layered architecture supporting disparate research projects 
with a development kit to explore a variety of research goals. The framework consists of four 
fundamental layers: (a) the core framework layer, (b) the extensibility and application 
programming interface (API) layer, (c) the module / messaging layer, and (d) the application 
layer (see Figure 7). The core framework layer provides foundational software classes and an 
API. This layer enables functionality for module lifecycle, user profile, and display layout 
management. Additional features of this layer include system level notifications, multi-modal 
interactions with feedback, workspace management, asset management (vehicles, tracks, sensors, 

https://www.vdl.afrl.af.mil/
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named areas of interest, etc.), geospatial information systems (GIS) data and earth mapping 
capability, as well as HMI elements. All software modules maintain a public framework API to 
support interface extensibility. This is accomplished in the extensibility and API framework 
layer. The module and messaging layer contains code written for single and specific purposes. 
This is the layer that contains HMI, utility classes, and messaging protocol support for 
communication to external software components. Finally, the application layer contains code 
related to executable applications such as a test-bed, utility application, or TOC. All code is 
written utilizing agile software development principles (SOLID: Single Responsibility, 
Open/Closed, Liskov Substitution, Interface Segregation, and Dependency Inversion) (Martin, 
2012).  
 

 
 

Figure 7: Fusion Layered Architecture 
 

There are four primary research threads that Fusion is addressing to accomplish the goals 
of developing a framework for human interaction with flexible automation across multiple 
UxVs: (1) developing a software system that can generalize disparate and similar messaging 
protocols to be protocol-agnostic while allowing a many-to-many relationship between 
networked systems for the generation, distribution and consumption of network messages; (2) 
developing a software framework where every public element, regardless of its role as a model 
or user-interface element, is customizable, extendable and override-able by any other software 
developer in the system; (3) developing a software system that is fully instrumented to gather 
real-time user/machine interactions and system details for use in experimentation, software 
agents, and machine learning; and finally, (4) developing a software system that records the state 
of each of its components and makes it user-accessible to enable discrete and continuous 
retrospection of the system in real-time. 
 
3.1.3.3.1 Cloud-based Simulation Architecture 
 

The development team has established an API for external software components to communicate 
and interact with Fusion. To date, vehicle simulations, intelligent task allocation agents, vehicle 
planners, speech interpreters, chat systems, sensor visualization, operator assistance components, 
map layer data, and monitoring components have been incorporated into the Fusion network 
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API. These networked components employ various connection modalities (e.g., User Datagram 
Protocol (UDP), TCP/IP, ZeroMQ) and communicate using various messaging protocols (Light-
Weight Message Control Protocol (LMCP), JavaScript Object Notation (JSON), Distributed 
Interactive Simulation (DIS), and custom protocols). In some form, all the components are linked 
together in their communications modalities by use of a centralized hub (see Section 4.1.3.5.1). 
Where appropriate, the connections and protocols are also realized into appropriate interface 
components in Fusion, and are intended to aid in creating a more immersive and interactive 
system for human-autonomy teaming.  

The goal of this network API is to make the incorporation of external software as 
transparent and natural as possible while leveraging data efficiently. All of the instrumentation 
data is distributed to the centralized hub, and any component that wishes to consume the data can 
do so with a subscription. Likewise, communication messages from the other components are 
delivered to the same hub, and Fusion (or any other component) can subscribe and receive those 
messages. Each of the networked components may also communicate with another networked 
component using this same network structure. The publish/subscribe architecture present on the 
centralized hub makes for a natural assembly: all the associated data published by any software 
entity is available to any other service that needs to leverage it, thus enabling flexibility in the 
potential interactions between the services, including Fusion and its operator(s). It also 
establishes the framework that will be needed to extend the IMPACT system to support a 
multiple operator/multiple unmanned system interface thus enabling task/goal sharing and 
handoff among operators in the overall system. 
 
3.1.3.3.2 Software Extensibility 
 

Fusion is being used in several different projects, all of which share the goal of improving 
operator interactions with highly autonomous systems but have vastly different HMI designs and 
algorithms. Due to this, Fusion was built with the goal of extensibility throughout the 
architecture.  

The Fusion infrastructure enables software developers to override aspects of the HMI by 
utilizing Fusion’s layered architecture to leverage the building blocks for HMI tools and services. 
The framework enables developers to add new HMI tools and services by overriding those 
building blocks and developing new modules. Thus, developers can override or extend aspects of 
Fusion without altering the original or previous extensions. Modules can be either universal or 
project-specific. Through this, the researcher can choose which modules are loaded, and 
therefore affect how the Fusion HMI appears and reacts to user inputs.  

One example of the extensibility currently realized in Fusion is the vehicle symbol. In 
test beds that allow operators to control or supervise unmanned systems, vehicle symbols are 
important and appear in multiple areas in the HMI. Within Fusion, vehicle symbols appear on the 
map, in various notifications, on the vehicle status tool, in tasking tools, in many project specific 
tools, and other locations. Project specific vehicle symbol designs can easily be represented 
within the Fusion framework with a single line of code in the project-specific vehicle symbol 
specification, all vehicle symbols in the Fusion test bed can then be replaced. These features can 
then be realized at run-time vs. at source code implementation.  
 Extensibility saves a great amount of development time and empowers designers to test 
multiple solutions. A HMI can be designed and implemented in multiple ways and, depending on 
which modules the user loads, a specific design is realized. This facilitates experimentation on 
design candidates. 
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3.1.3.3.3 Interface Instrumentation 
 

Data collection, agents, and machine learning all require the real-time capturing of data, which 
must be stored or packaged and sent across the network. HMI interaction is a prime example of 
one of these critical data sources. This capability was built into the Fusion framework to provide 
a non-invasive mechanism to the developers and provides a host of information, post-hoc and 
real time. Every user interaction, such as button clicks, typing, and mouse clicks are recorded 
and saved to a database. 

All instrumented data is also packaged and sent through the network to any service 
connected to the centralized hub such as; agents, machine learning algorithms, cognitive 
modeling services, or other automated services that subscribe to the data source. Instrumentation 
of all operator interactions is critical for effective evaluation of human-autonomy teaming 
performance measures. This feature can be used to advance the capabilities of machine 
reasoning.  
 
3.1.3.3.4 Human-Autonomy Dialog through Retrospection 
 

All of the instrumentation data can be used for retrospection, allowing it to be re-played post 
process or played back during runtime. Retrospection has two main applications (and potentially 
more): experimenters can observe what was occurring to analyze why an operator performed an 
action or series of actions, and operators can “pause” and “rewind” the scenario to get another 
look at something that occurred in the past, further enhancing the human-autonomy dialog.  

The concept of an operator being able to review the actions of an autonomous agent prior 
to the execution of those actions introduced the concept of a sandbox display. The sandbox is an 
area of the HMI where the operator can invoke actions that are not instantly carried out by the 
UxVs. This allows the user to evaluate autonomy-proposed actions and tweak various parameters 
prior to committing to them. Other displays within Fusion still depict current vehicle activities in 
real time, so the operator maintains effective situation awareness (SA), therefore giving the 
operator more insight into the autonomous component actions and reasoning. Another use of the 
sandbox is to play back the scenario using the instrumented data to see what occurred at some 
point in the past. This could possibly help operators make more informed, quicker decisions in 
the future. Further development within the Fusion framework is required to fully enable this 
feature and work is underway to explore those possibilities. The concept of a Sandbox display is 
discussed in more detail throughout this report. 
 
3.1.3.4 Fusion Visual Framework 
 

The Fusion visual framework is broken into six key concepts: (a) Login, (b) Layout, (c) 
Notification, (d) Feedback, (e) Canvas, and (f) Tiles (see Figure 8). 
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Figure 8: Fusion Visual Framework Components 
 

While most of Fusion is customizable, there are a few core aspects that are common 
across all projects. Each project maintains specific scenarios that contain the instructions on 
which modules should be loaded as well as how the Fusion visual framework is laid out and 
operates. Fusion requires a user login and profile which contains information about a specific 
user such as last selected scenario and visual layout. There are also several key HMI components 
common across all scenarios, such as screen layouts, canvases, feedback/notification bars, and 
tiles. All of which are completely configurable to meet the needs of the scenario.  

The layout system gathers information from the operating system on the number of 
physical displays connected as well as their resolution. To avoid confusion, Fusion internally 
renumbers the screens based on their top left corner position, where ordering is from left to right, 
top to bottom. This allows the layout to be consistent across varying machines with potentially 
different screen layouts and resolution configurations. The Fusion layout identifies which 
physical screens are to be used, what canvas to show, if the notification/feedback bars are to be 
shown, and if that screen is configured as a sandbox.  
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Each screen can have either an earth canvas, a blank canvas, or a custom canvas. The 
canvas can be thought of as an artist’s canvas of which to place a variety of HMI elements. The 
HMI elements can be embedded in the canvas itself, such as the earth, or can be a space to place 
tiles. Custom canvases can be made to suit any projects’ needs. Two additional core HMI 
elements include the notification bar and the feedback bar.  
 
3.1.3.5 IMPACT Architecture 
 

The IMPACT architecture is composed of a number of services, many of which are connected 
through the centralized hub/ZeroMQ Hub. These services include Fusion, Dialog, Aerospace 
Multi-Agent Simulation Environment (AMASE), SubrScene, CECEP, UxAS, plan monitoring, 
state server, database sources, speech support, and One Semi-Automated Forces (OneSAF; see 
Figure 9). 
 

 
 

Figure 9: IMPACT Architecture 
 
3.1.3.5.1 Hub 
 

As the central point in the architecture, the hub has the responsibility of vectoring messages to 
any subscribed service. The hub directly supports ten connections in the full scale IMPACT 
configuration. It forwards, as appropriate, messages in either LMCP or JSON format. The 
Transmission Control Protocol (TCP) connections support LMCP messages only, but all other 
connections are protocol-agnostic.  

The hub is a Java implementation with configurable socket connections. It employs 
ZeroMQ publish sockets and pull sockets to collect messages from and deliver messages to 
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various connected software entities. It additionally supports a configurable connection as a client 
to a TCP server. The various connections are bridged in the hub such that any connection that 
sends a message can have that message forwarded to all other subscribed connections. In the full 
scale IMPACT architecture, the ten connections are: a simulation (AMASE), a component for 
tactical route planning and execution (UxAS), an intelligent agent (CECEP), an autonomics 
component for plan monitoring and feedback, the dialog support, the state server, and four 
Fusion connections (C2, sensor operation, test operator support and a status display for the test 
operator). The IMPACT hub employs a two-part messaging protocol, with the header defining 
the message type and the body containing the content. The header then dictates which messages 
are delivered. The convention within the IMPACT messaging structure is to define the protocol 
of the message followed by a class description. The hub enables connections of all the software 
components to AMASE, and thus enables a straightforward mechanism for adding other 
simulations or exchanging them for real-world data feeds. 
 
3.1.3.5.2 OneSAF 
 

OneSAF was used to create the complex scenarios representing the friendly and opposing forces 
in the environment. It sends UDP multicast packets of DIS entity states and the entities it 
specifies move according to the scenario set up in OneSAF. AMASE then collects the UDP 
multicast entities, translating them into the LMCP entity specification and then evaluating 
whether the OneSAF entities are detected by the operator-controlled vehicles. These perceptions 
are then sent on so they can be acted on as appropriate in Fusion. OneSAF serves the role of 
providing some external entities that can be acted on, and otherwise is not subject to much of the 
IMPACT architecture. 
 
3.1.3.5.3 AMASE 
 

AMASE is a Java-based unmanned vehicle simulation. It simulates, at limited fidelity, 
unmanned surface vehicles, unmanned air vehicles, and unmanned ground vehicles. While 
advanced vehicle routing and task execution is handled by UxAS, AMASE supports basic 
waypoint-based navigation on all three platform types. This includes an A* algorithm for finding 
road-constrained routes for ground vehicles and simulating that surface vehicles become 
immobile if they leave a defined “water region”. For every vehicle that AMASE simulates, a 
configuration and initial state is created. When AMASE is running the simulation, it updates the 
states as appropriate. Depending on the vehicle, AMASE supports multiple navigation modes. 
Air vehicles in AMASE support loiter, flight director, and waypoint navigation modes. Surface 
vehicles support flight director and waypoint modes. Ground vehicles support waypoint 
navigation mode only, as they are specified within AMASE to stay on the prescribed road 
network. 

AMASE consumes DIS entities generated by OneSAF to populate its internal LMCP 
entity list and generate detection events as appropriate. AMASE also sends DIS entity states for 
its vehicles to SubrScene so the vehicle can be visible to others in the sensor feed. 
 
3.1.3.5.4 Fusion Instances  
 

Fusion supports Protocol Buffers, Cursor on Target messaging, STANAG 4586, LMCP, JSON, 
and DIS messages. Fusion connects to the hub through the ZeroMQ sockets described earlier. It 
sends JSON messages through the hub to CECEP and other Fusion instances and LMCP 
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messages to UxAS and AMASE. It receives LMCP messages from AMASE and UxAS; JSON 
messages from Fusion instances, CECEP, Dialog, and plan monitoring; video feeds from 
SubrScene, and GIS information from data servers. Fusion displays this information, where 
appropriate, in the display mechanisms described earlier. The play communication aspects are a 
specialized subset of the messages, and are described in Section 4.3. 
 
3.1.3.5.5 SubrScene 
 

SubrScene renders and delivers simulated video feeds. It consumes LMCP vehicle states, 
translates them internally to DIS entity states, then renders the sensor feeds according to these 
states. It also collects the UDP multicast DIS entity packets being published by OneSAF to 
populate other entities in the view. It produces UDP multicast mpeg encoded video streams that 
Fusion displays. The same mechanism can be employed to deliver alternate sensor feeds from 
some other source, such as a live camera feed from an unmanned vehicle. 
 
3.1.3.5.6 CECEP 
 

The CECEP agent supports play calling by evaluating possible allocations of unmanned vehicles 
against play constraints. It also fields queries from the dialog. It is central to the IMPACT 
concept of play calling, as it provides a mechanism for abstraction of an operator’s management 
away from vehicle specifics and towards task requirements. More details are described in Section 
4.3. 
 
3.1.3.5.7 UxAS 
 

UxAS handles planning requests formatted as LMCP messages. It connects to ZeroMQ ports on 
the hub, collecting tasks and requests. It translates these requests into responses, with complete 
waypoints and loiters as appropriate. For planning purposes, it also returns information regarding 
estimated times enroute which enables ranking and evaluation of competing plans for CECEP. 
During task execution, UxAS monitors vehicle states and updates waypoints and sensor steering 
commands as the task unfolds. More details are described in Section 4.2. 
 
3.1.3.5.8 Dialog 
 

The Dialog component connects to the hub through the ZeroMQ sockets. It sends data to CECEP 
to support queries and Fusion for translating speech commands into HMI responses. It maintains 
a direct connection to Fusion in addition to the hub connection. It also enters an Extensible 
Messaging and Presence Protocol (XMPP) chat room to provide live transcripts regarding the 
interpreted commands spoken to the system. 
 
3.1.3.5.9 Plan Monitoring 
 

The plan monitoring connects to the hub through ZeroMQ ports. It evaluates ongoing plays 
against their associated plan to determine the quality of the execution. It provides alerts to 
operators and status updates whenever some global constraint is violated. (more details in 
Section 4.4). 
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3.1.3.5.10 State Server 
 

The state server connects to the hub through ZeroMQ ports. It collects all LMCP and JSON 
messages, capturing and recording the state of the overall system. 
 
3.1.3.5.11 Speech Recognition 
 

Speech is captured with the transcript collected by the speech support component. It then 
translates the speech into a set of utterances, which is parsed and managed by the dialog. It 
connects to an XMPP chat server to transcribe the data for the dialog. It does not connect directly 
to the Hub. Its connections are through an HTTP server to an XMPP gateway and a connection 
to a DIS radio through Fusion. Fusion generates the DIS radio messages, then a speech module 
records the speech to an audio file. The audio file is parsed with the PocketSphinx based speech 
engine, and the resulting speech interpretation hypothesis is transmitted to the XMPP server, 
which is parsed by the dialog. 
 
3.1.4 Capabilities Developed 
 

The core Fusion framework provides additional capabilities to execute project specific scenarios. 
 
3.1.4.1 Geospatial Information Systems (GIS) Mapping Capabilities 
 

A common tactical situation display was necessary to provide a rich GIS mapping experience for 
the user. The Fusion team developed SharpEarth which is a 3D mapping tool used to display 
geospatial data and layers onto a 3D representation of the earth. SharpEarth was created as a 
wrapper in C++ to extend the functionality of the C++ toolkits OsgEarth and OpenSceneGraph 
provides into the C# programming language. Extending such massive toolkits enables Fusion to 
have a feature rich map with a large library of GIS layers such as Web Mapping Service 
imagery, Elevation data, Weather Layers, and Tiled Image Layers (tiff, png, jpg), and to also 
support the display of any 3D object on the map such as shapes, text, icons and indicators. Touch 
and mouse manipulations of the map are fully supported and can easily be managed through a 
well-defined interface allowing complex interactions on the map such as shape manipulations. 
The earth can be displayed as either a tile or a canvas inside of Fusion and can be completely 
customized through an earth configuration file without the need to change the code base. 
 
3.1.4.2 System Help  
 

Fusion provides a robust interface for displaying richly formatted help files specific to each 
component. These are defined as HTML and completely configurable by the system developer. 
The help system is integrated at all levels of interaction with the overall system. 
 
3.1.4.3 Media Manager 
The Media Manager (Figure 10) allows the user to view and markup images, view videos, and 
listen to audio files. By default the media manager monitors the output directory for the current 
Fusion run and loads any existing media therein as well as any new media that becomes available 
in this directory. Additional media directories to load and monitor can also be specified.  
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Figure 10: Media Manager 
 

3.1.4.4 Vehicle Dashboard   
 

The Vehicle Dashboard (Figure 11) is a visual overview 
of the all the components of a specific vehicle. All the 
components on this view are to provide at-a-glance 
information to allow the user to view all major events 
associated with each vehicle. The vehicle popup head up 
display (HUD) provides the bulk of the high level 
information the user would need to make reactive 
decisions to the scenario on a per vehicle basis.  
 
3.1.5 Component Testing 
 

The Fusion framework and software development team utilizes a test-driven development cycle. 
This ensures that all aspects of the software system are properly peer-review and tested 
throughout the lifecycle of the project. Test cards, use cases, and robust protocols were 
developed throughout the project enabling an effective iterative development of the overall 
system. Test engineers as well as human factors researchers could then effectively perform their 
respective testing of the system at the appropriate level. The overall goals for the Fusion project 
were to foster a rich testing environment across a multi-domain scenario and project specific 
trade space. 
 
3.1.6 Lessons Learned and Next Steps 
 

Large scale software development can pose a rather complex set of challenges to a diverse and 
geo-graphically distributed team. The concept of a VDL with a robust configuration management 
scheme quickly became necessary. Providing a common software framework for all to utilize 
across the VDL was paramount to the success of the IMPACT project, resulting in the Fusion 
Framework. Setting up a shared repository, utilizing an agile development process through 
SCRUM, and scheduling regular technical interchange meetings proved necessary to the 
sustainment of the IMPACT project. 

Future enhancements to the framework include: (1) support for distributed operations 
(multiple C2 stations interacting), (2) enhanced retrospection within decentralized 

Figure 11: Vehicle Dashboard 
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communication incorporating platform autonomy, (3) visualization of decentralized asset data 
when “re-synchronizing” with the centralized C2 system, and finally (4) maintenance and 
extension of the functionality of the Fusion framework to support manned-unmanned teaming 
and future autonomy-based projects. 

 
3.2 UxAS  
 

3.2.1 Motivation and Challenges 
 

Current ground control stations for unmanned vehicles provide relatively low levels of 
autonomy, e.g. automatically commanding an assigned vehicle to fly to a sequence of waypoints 
generated by a human operator. The goal of UxAS is to provide increased levels of autonomy for 
control of heterogeneous teams of UxVs. Toward this end, UxAS provided flexible and adaptive 
automated path planning, sensor steering, and inter-vehicle coordination for unmanned air, 
ground, and surface vehicles in IMPACT. Specifically, UxAS addressed the following 
challenges raised in this project: 

1. Reducing operator workload by implementing automated vehicle path planning and 
sensor steering tasks that underlie each play. 
2. Increasing the reactivity of certain plays by implementing autonomous vehicle behaviors 
that enable inter-vehicle coordination and adaptation to changing conditions. 
3. Increasing play flexibility by providing tunable parameters that are usable by both human 
operators and other forms of autonomy implemented in IMPACT. 
4. Providing support for air, ground, and surface vehicles. 
5. Implementing batch processing to support agent reasoning over alternative COAs. 
6. Architecting the software to enable the rapid addition of new capabilities and support 
improved test, evaluation, verification, and validation. 

 
3.2.2 Software and Hardware Acquisitions  
 

The UxAS software package was produced and used throughout the IMPACT ARPI to 
implement automated vehicle path planning, sensor steering, and inter-vehicle coordination. The 
core UxAS framework and associated IMPACT services have been approved for public release 
and are available to interested developers for follow-on work at https://github.com/afrl-
rq/OpenUxAS. 

Improvements were also made to the AMASE to support new plays, vehicles, and 
message sets developed in IMPACT. An open version of AMASE is approved for public release 
and is available at https://github.com/afrl-rq/OpenAMASE. 
 
3.2.3 Development and Implementation 
 

Over the past 10 years, researchers at AFRL have been developing and flight testing algorithms 
to automate cooperative Unmanned Air Vehicle (UAV) missions. As part of the IMPACT effort, 
the software that implements cooperative UAV autonomous decision-making and route planning 
underwent a modernization effort in order to make it easier to extend and maintain. Currently, 
UxAS software forms the foundation for experimental research programs ranging from human-
machine interaction to decentralized cooperative control. 

UxAS consists of a collection of modular services that interact via a common message 
passing architecture. Similar in design to the Robot Operating System, each service subscribes to 

https://github.com/afrl-rq/OpenUxAS
https://github.com/afrl-rq/OpenUxAS
https://github.com/afrl-rq/OpenAMASE
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messages in the system and responds to queries. UxAS uses the open-source library ZeroMQ to 
connect all services to each other. The content of each message conforms to the LMCP format. 
Software classes providing LMCP message creation, access, and serialization/deserialization are 
automatically generated from simple Extensible Markup Language (XML) description 
documents. These same XML descriptions detail the exact data fields, units, and default values 
for each message. Since all UxAS services communicate with LMCP formatted messages, a 
developer can quickly determine the input/output data for each service. In a very real sense, the 
message traffic in the system exposes the interaction of the services that are required to achieve 
autonomous behavior. 

Consider a simple example: the automated construction of the flight pattern to conduct 
surveillance of geometric lines (e.g. perimeters, roads, coasts). A “line search task” message 
describes the line to be imaged and the desired camera angle. Using this input description, a line 
search service calculates the appropriate waypoints to achieve the proper view angle. When the 
UAV arrives at the first waypoint corresponding to the line search task, the line search service 
continuously updates the desired camera pointing location to smoothly step the camera along the 
intended route during task execution. 

In addition to surveillance pattern automation, UxAS contains services that automate 
route planning, coordinate behavior among multiple vehicles, connect with external software and 
hardware devices, validate mission requests, log and diagram message traffic, and optimize task 
ordering. In all, UxAS has approximately 50 services. In the IMPACT system, UxAS works in 
collaboration with the intelligent agents to determine allocation of vehicles by conducting route 
planning and tailoring on-task behavior. 
 
3.2.4 Capabilities Developed 
 

UxAS was originally designed to test cooperative control algorithms. While some IMPACT 
plays utilize UxAS for automating complex cooperative behavior (such as the blockade and 
cordon plays), much of the contribution to the overall IMPACT system revolved around 
leveraging foundational capabilities such as route planning and surveillance pattern calculation 
(Kingston, Rasmussen, & Humphrey, 2016). Additionally, accommodating flexible play calling 
required careful consideration of the ways in which the automated behaviors could be tailored for 
the situation at hand. Finally, the software design itself was updated to be modular and more 
easily verified and validated. 

The remaining subsections correspond to the challenges described in Section 0 and the 
primary capabilities developed to address those challenges. 
 
3.2.4.1 Automated Path Planning and Sensor Steering 
 

Autonomous vehicles operating in real-world contexts must reason soundly about the availability 
and timeliness of routes that reach their goal locations. Of particular importance is the ability to 
plan routes in spaces that are constrained by regulation (e.g. air tasking orders), environment 
(e.g. terrain), and physical motion limitations (e.g. minimum turn radius). During IMPACT, 
UxAS route planners for both fixed-wing aircraft and ground vehicles were created. A robust 
interface specification allows for other route planners to be easily added to account for additional 
vehicle types (such as underwater vehicles). 

The developed aircraft path planner ensures that minimum turn radius constraints are met 
while simultaneously avoiding “no-fly” geometric regions. The technique is based on a 
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triangularization of the space and a subsequent search for a series of adjacent triangles that have 
edge lengths greater than the minimum turn radius of the vehicle. Although this precludes 
consideration of narrow (yet feasible) corridors in the environment, the resulting path is 
guaranteed to meet the turn radius constraints of the vehicle and is extremely fast even for 
complex environments (e.g. ~3ms for typical UAV airspace constraints). It should be noted that 
this technique is limited to fixed-altitude operations; however, in our experience this is rarely an 
issue because integrating with military airspace generally requires that UAVs fly in certain 
altitude slots during operation. 

The focus of our path planning research has been to support rapid, robust planning 
techniques for aircraft; however, to allow heterogeneous vehicle operation, incorporation of path 
planners for other types of vehicles is needed. UxAS is architected to abstract the path planning 
from higher-level decision making; this natural separation allows the development of a common 
interface to adapt additional planners to fit in the whole system. To demonstrate this, we 
developed a ground vehicle route planner that plans routes on Open Street Maps road networks. 
This ensures that ground vehicles adhere to feasible roads, yet abstracts that detail so that 
decision logic need only reason about timing and availability. A modified version of the aircraft 
path planner was used to plan routes for surface vehicles, although it is anticipated that a path 
planner that works directly with surface vehicle limitations will ultimately be needed for real-
world applications. 
 
3.2.4.2 Autonomous Vehicle Behaviors and Inter-Vehicle Cooperation 
 

In simple terms, a play call consists of reasoning over vehicle availability and response time to 
fulfill the play goals. Once the vehicles that will service the plays have been determined, the 
actual unfolding of the play is handled by UxAS. Each play is ultimately decomposed into a 
series of steps that the autonomous vehicles follow to reach the goal. For example, once an 
“escort” play is in progress, the assigned autonomous vehicles must react to the supported 
convoy’s motion. During this play, UxAS estimates the motion of the convoy and determines the 
proper leading, overhead, and trailing surveillance locations. As the convoy updates its position, 
the team adjusts their surveillance goals to constantly keep watch. 

Similarly, each play involves its own unique “on-play” behaviors ranging from optimal 
search pattern calculation to cooperative port blocking maneuvers. Although many plays have a 
static sort of behavior (e.g. traverse a pattern for optimal coverage), numerous plays rely on 
adaptation to changing circumstances (e.g. movement of enemy and friendly vehicles). 

In addition to determining the on-play autonomous behavior for both single and multi-
vehicle plays, UxAS provides a mechanism for incorporation of external on-play behavior 
software. By leveraging the modular architecture, new plays that require different on-play 
behavior can be easily incorporated. 
 
3.2.4.3 Tunable Play Parameters 
 

One of the key goals of IMPACT was to provide operators a means to tailor autonomous 
behavior to handle situations that were never explicitly designed. By providing the ability to 
update plays rapidly, it is anticipated that their applicability will be wider. A major consideration 
for design of autonomy, therefore, is the choice of ways in which the operator is allowed to 
“tune” a particular play. Working with the operator interface and agent teams, parameters for 
each play that should be tunable during operation were identified and implemented. For example, 
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in simple point surveillance tasks, the approach angle can be directly specified to ensure a view 
from a particular direction, or it can remain free for the autonomy to choose. UxAS provides 
many such parameters for flexibility including stand-off distance, loiter shape, time-on-target 
duration, and search pattern directions. Coupled with the ability for the operator to rapidly update 
the airspace constraints, a wide range of very precise goals can be met without the operator 
resorting to placing waypoints manually.  
 
3.2.4.4 Support for Ground and Surface Vehicles 
 

Although UxAS is primarily focused on aircraft, particular design attention was paid to 
separating high-level reasoning and decision making from the details of planning for particular 
vehicles. This clean separation and abstraction allows seamless inclusion of other vehicle types. 
Currently, UxAS uses simple assumptions to plan for both ground and surface vehicles and 
provides a baseline capability for a complete air/ground/water mission. It is anticipated that 
replacing the baseline calculations with software that accounts for the complexities of these 
vehicles will use the same interface to connect with the system and thus leverage the entirety of 
IMPACT with minimal change. 
 
3.2.4.5 Batch Processing 
 

As the decision space grows in larger multi-vehicle missions, a means to rapidly calculate and 
aggregate the necessary timing data is required in order to optimize vehicle allocations. UxAS 
therefore allows queries to be made in a “batch” mode in which entire timing tables are 
calculated and formatted for ease of use in higher-level decision logic. This is done in a 
deliberately scalable manner so that such requests can be handled in parallel (i.e. on a cluster of 
computers). The intelligent agents heavily rely on these calculations to make recommendations 
to the operator. 
 
3.2.4.6 Improved Architecture 
 

A common theme for each capability described above is the notion of a modular, extensible 
architecture. This entails a principled separation of underlying technologies, essentially finding 
the proper seams that allow the ability to optimize where possible while simultaneously 
abstracting functionality so that replacements and updates can be made without side-effects to 
the overall system. UxAS underwent a thorough re-architecting during the IMPACT effort to 
meet the challenges of supporting many types of plays and vehicles. A major benefit of this is the 
ability to target testing and simulation toward key parts of the system while retaining confidence 
in overall system operation. 
 
3.2.5 Component Testing 
 

UxAS currently includes 17 automated unit tests that help ensure core capabilities remain 
functional when new capabilities are added or changes to existing capabilities are made. 
Additional automated unit and system-level tests are currently under development to allow quick 
verification as the software changes. 

In addition to simulation and user evaluations, UxAS is frequently flight tested as a 
critical part of the Intelligent Control and Evaluation of Teams (ICET) project. On average, 
ICET conducts flight tests 3 times yearly. In these events, UxAS runs onboard small UAVs and 



 

25 
DISTRIBUTION STATEMENT A:  Approved for public release.                                             Cleared, 88PA, Case# 2018-0820. 

provides the route planning and high-level reasoning capabilities needed for conducting 
cooperative surveillance missions. Much of the functionality developed for IMPACT is utilized 
directly in these flight tests. During the week of 20 Feb 2017, the entire IMPACT system was 
used to simultaneously control live aircraft and simulated ground vehicles in a cooperative 
mission. 

 
3.2.6 Lessons Learned and Next Steps 
 

As autonomous systems grow in capability, the software needed to realize that capability also 
grows. Joining several nascent technologies into a complete functioning system was the largest 
obstacle facing the IMPACT team, and a number of lessons were learned throughout the 
integration process. For instance, the decision to use a common message passing framework to 
connect components paid great dividends and should be strongly encouraged in similar 
programs. However, this alone is not sufficient: great care must be taken to ensure that all parts 
of the system remain synchronized to the current version of the message set. Additionally, 
functional dependence between pieces of the system can cause wide-ranging side-effects to the 
system as a whole. For example, a simple change in how the simulation behaves at terminal 
waypoints caused a ripple effect in which other parts of the system could no longer determine 
when plays had finished. A standardized process for careful regression testing and identification 
of wide-reaching changes should be rigorously employed to minimize such disruptions. 

The future for UxAS includes incorporating these lessons learned in order to improve the 
ability to continuously verify and validate its functionality as its scope expands. To this end, the 
AFRL Summer of Innovation will apply cutting-edge V&V techniques to UxAS to formally 
capture its architecture and analyze its properties. The resulting V&V-amenable revision of 
UxAS will then be used on a government-provided basis in the AFRL Loyal Wingman program, 
which aims to augment a manned fighter with unmanned teammates. 
 
3.3  Intelligent Agents  
 

3.3.1 Motivation and Challenges 
 

Early in the effort, stakeholders participated in a technical interchange meeting to define the 
agent team’s objectives for addressing technical challenges in the IMPACT project. The 
objectives included advances in the following areas of USAF operational capabilities C2 of a set 
of heterogeneous UxVs using the Fusion UxV control station: 

1. Advance current methods for modeling human-system interaction and integrating 
executable cognitive models into human-machine teaming systems. 
2. Reduce overload of human operators by providing agent based decision making tools that 
solve common problems in the decision making domain involved in the C2 space of UxVs. 
3. Allow a single operator to coordinate with an intelligent agent to control multiple 
heterogeneous UxVs simultaneously.  
4. Provide transparency of agent decision making to increase situational awareness of the 
operator. 
5. Provide answers to vehicle and play related queries that are input into the system by the 
human operator using voice or text input. 
6. Develop background behaviors that are used to maintain behaviors that: 
a. Provide a default play for vehicles that are not assigned to other tasks. 
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b. Trigger a Highly Mobile execution mode that assumes an elevated security risk is present 
in the base defense scenario. 
c. Efficiently utilize available vehicles to provide a test scenario’s base defense coverage 
without a large planning burden on the human operator. 

 
3.3.2 Software and Hardware Acquisitions 
 

To address IMPACT technical challenges, artifacts and agents were developed using the CECEP 
software architecture. CECEP is a complex event processing framework with extended 
procedural and domain knowledge aspects. Short term functionally salient memory have been 
integrated into the CECEP Framework that are shared by various components as events in an 
event cloud. In the IMPACT effort, agents were specified used a modeling language called 
Research Modeling Language (RML) 2.19. RML is a modeling language developed in the tool 
Graphical Modeling Environment (GME). Code generation tools were used to produce 
executable code artifacts in from the RML agent models.  

Agents that use procedural knowledge are developed using a FSMs representation called 
behavior models (BMs). BMs include states and transitions between states that are guarded by 
patterns. A pattern language called Esper Pattern language is used in CECEP to match complex 
patterns in the event cloud for BM state transitions. BMs can also produce behaviors such as play 
calling feedback for the operator or assign vehicles to plays. BMs developed in the CECEP 
framework were the technical approach for addressing all human interaction monitoring, as well 
as, UxV monitoring, management, and allocation assignment aspects of the technical challenges. 

Agents that use domain knowledge are developed using feature models called cognitive 
domain ontologies (CDOs). A CDO is a rooted tree with features that are connected via relations. 
Four types of relations are supported in the framework sub-parts, choice-points, multi-choice-
points, and instance sets. CDOs can be processed using the AI process of constraint satisfaction 
to produce possible configurations or possible worlds. CDOs can produce all constraint 
compliant solutions, or a single best solution. In IMPACT, CDOs were used to address technical 
challenges regarding agent decision support, agent decision transparency, and background 
behavior allocations involving UxVs.  
 
3.3.3 Development and Implementation 
 

The CECEP architecture was integrated with external services to support IMPACT play calling. 
Services such as UxAS, Fusion interface, plan monitoring capability, and UxV simulator 
(AMASE) were integrated with CECEP. A shared specification for messaging event structure 
was developed in order to allow for data sharing between various services. External event 
sources were translated and placed into the working memory for agent and adapter consumption. 
Truth data containing relevant data, such as vehicle types and configurations, were made 
available to cognitive agents developed in IMPACT. This allowed for more agent reasoning and 
suggestion of optimal vehicles for play call allocation. Figure 12 illustrates how the CECEP 
agents interact with external services in the play calling process.  
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Figure 12: Play Calling Process in IMPACT 

  
3.3.4 Capabilities Developed 
 

Products of the ARPI IMPACT effort include an enhanced CECEP framework, CECEP agents, 
and CECEP adapters. CECEP model execution capabilities, originally developed for previous 
research and development efforts, were successfully extended in this effort. Agent modeling 
conducted by the agent team unearthed additional opportunities to extend the CECEP 
framework’s capabilities and resulted in new functionality. Each capability in the section below 
corresponds to the numbered technical challenge objective listed in section 4.3.1. 
 
3.3.4.1 Integrate Cognitive Models – Human-Machine Teaming 
 

The agent team has developed three methods for integrating with a CECEP agent. The first 
method is to implement communication protocols in an external system that is compliant with 
existing CECEP communications. The second method is to create a CECEP adapter that 
connects to an external system and outputs event information into the format used within 
CECEP. The third method of communicating with a CECEP agent was developed specifically 
for this effort. The agent team developed a ZeroMQ hub that provides the ability to connect 
multiple event sources without regard to language or platform. The ZeroMQ hub component was 
developed to manage messages, represented as events, between components. An adapter was 
used to interface CMASI data, process it, and place it in CECEP’s Esper event cloud where it 
can be used by CECEP agents and adapters. CECEP agents were developed to model human 
cognition and integrate executable cognitive models into human-machine teaming systems. 
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3.3.4.2 Decision Making Support for Reducing Operator Workload 
 

The agent team developed a play calling CDO that, when processed through constraint 
satisfaction, produces all vehicle COAs for achieving a play call. Constraints are applied to 
ensure sensor, weapon, and other capabilities will meet the demands of the called play. A sorting 
algorithm is applied to rank all COAs and provide the human with a suggested best COA for a 
play call. Plays are sorted by minimized time, minimized fuel usage, minimized detectability, 
maximized presence, maximized crowd control capability, and/or maximized tracking capability. 
Environmental conditions, sensor NIIRS, and vehicle availability were also factored into the 
sorting algorithm.  

Constraint programming using Java constraint solvers was used to process the IMPACT 
play CDO. Constraint programming is an approach to programming that combines reasoning 
with computing. Problems expressed as constraint satisfaction problems are defined using a set 
of domain variables and relationships between these variables in the given problem domain.  
Additional decision support capabilities such as communications range support, play chaining, 
and play delaying are supported by the agent. In IMPACT, every UxV asset has an effective 
operating range. This range constrains the area where plays can be called for an asset. Vehicles 
are configurable to include a communications relay payload that can be used to support a play 
call outside of an asset’s effective operating range. The intelligent agent provides 
communications relay decision support for plays involving vehicles that will go out of 
communications range.  
 
3.3.4.3 Operator Control of Multiple UxVs 
 

Agents were developed that assist an operator with play calling in a semi-autonomous fashion. 
The IMPACT experimental design team, from 711HPW/RHCI, defined requirements for 26 play 
call types. Each play call has a unique set of play details, and the IMPACT agent team developed 
26 play BMs to support all play call types. These BMs monitor operator interface interactions 
and environment information relevant knowledge for COA generation. 

Multiple plays can be managed concurrently and this is handled in the agent’s resource 
manager capability. In the resource manager, play state is managed and conveyed to the operator 
for improved system transparency. A play can have a state of active, ready, or not ready. Active 
plays are plays that have been accepted and are currently executing. Ready plays are those plays 
that have a solution and are waiting for operator interaction for acceptance. Not ready plays do 
not have constraint compliant solutions. Not ready plays commonly occur when a payload 
requirement is specified by the operator, but there isn’t a vehicle available that has the desired 
payload. 
 
3.3.4.4 Agent COA Transparency 
 

One of the major challenges of autonomy and automated decision making is in providing 
transparency on automated decisions and actions. One method to validate agent decisions, which 
was adopted in IMPACT efforts, was to convey the information (constraints and domain 
conditions) used to make the decision. An explanation capability was developed by the agent 
development team. Each constraint in the IMPACT play calling CDO has a corresponding 
explanation. If a COA is constraint compliant, an explanation can be generated from that 
constraint that describes why the COA was not constrained from the solution space. The set of 
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all active constraints with their corresponding explanation is provided to the operator to explain 
why a particular COA was valid.  
 
3.3.4.5 Support Voice and Text Queries 
 

BMs were developed to match patterns for operator voice and text query events and provide 
auditory and textual responses to the operator for play calling. A capability was developed to 
answer operator questions about vehicle to play, or capability to play assignments for predefined 
play locations such as: “How soon can I get an IR sensor on the Ammo Dump?.” The operator 
can generate a visual of the play by saying “show me” or execute the play by saying “confirm”. 
Other queries such as “what is a vehicle doing?” or “what is a vehicle’s fuel state?” were 
supported as well. A total of 9 different query types were support in the agent.  
 
3.3.4.6 Developed Dynamic Background Behavior 
 

Background behavior capabilities were supported for all UxVs in IMPACT. Two background 
behavior modes were developed in IMPACT (i.e., normal full coverage patrol (NFCP) and 
highly mobile (HM)). In both NFCP and HM, all UxVs patrol their assigned areas of 
responsibility in or around the base. The default patrol state can be set to either NFCP or HM 
with the operator being able to quickly toggle between the two. When a critical event occurs 
(e.g., a threat to the base perimeter), the operator is able to switch to an HM patrol with a single 
button interaction.  
 The agent was developed to manage background behavior reassignments for play calls 
and cancelations, play completes, play pauses, manual control, and background behavior mode 
changes (HM or NFCP). The developed background behaviors minimize arrival time of allocated 
assets to NAIs or routes. Clusters are predefined for the eight ground NAIs by pairing four sets 
of two NAIs. Both background behavior modes support acclimation of UxV to task assignments 
when a play is called.  
 
3.3.5 Component Testing 
 

Testing was accomplished using TestRail, TeamCity, and two distinct methods of testing. Since 
some elements of play calling would be difficult to test automatically, we implemented both a 
manual test system and an automated test system. We performed both manual and automated 
testing using regression tests for modules and adapters as well as continuous integration testing 
(Jenkins) for the full system. Regression tests were coded for each agent and adapter so that 
when any changes were made, we would know immediately if the changes broke any of the other 
components based on the developed tests. Over 400 regressions tests were produced for agent 
testing. 
 
3.3.6 Lessons Learned and Next Steps 
 

CECEP agent development involves a significant amount of tribal knowledge that is learned 
primarily from interactions with experienced CECEP agent developers. Initially in the IMPACT 
project, there was limited documentation describing CECEP features and modeling. By the end 
of the project CECEP modeling documentation was improved to the point where less training 
was required for new developers. 
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Team coordination challenges existed in IMPACT due to the geographically diverse 
teams involved and the varied sequentially dependent responsibilities between those teams. We 
reduced the problems using weekly integration meetings, but still had occasional problems due to 
inconsistent availability of meeting minutes. Communication is essential and the IMPACT team 
improved in this area by the end of the project. 
Several development processes were lacking early on in the effort, but were later improved. 
These included management of manual testing, automated testing, and configuration 
management. The agent team has since moved towards using elements of agile software 
development. We found that shared development of models was difficult given the limitations of 
our modeling toolset. Improvements were made to allow for concurrent development of agents. 

CECEP evolved for this effort to include previously unavailable features. The most 
important of which is the ability to dynamically generate behavior models during runtime. 
Previous to this effort, any required behavior models had to be pre-allocated prior to runtime. 
This new capability allowed for multiple play calls of the same type, using generative behavior 
models that are dynamically allocated at execution time. 

The agent development work that was completed in IMPACT has led to additional 
opportunities. The technical approach and lessons learned from the IMPACT project will be 
carried forward into future efforts. The direction of research for the agent team is likely to 
involve mission planning, operational design, decision making assistance, and the integration of 
hardware accelerated constraint solvers to speed up the constraint solving process.  
 
3.4  Autonomics for Plan Monitoring  
 

3.4.1 Motivation and Technical Challenges 
 

With a single operator overseeing teams of heterogeneous unmanned vehicle platforms 
performing multiple concurrent missions comes increased complexity that is difficult to monitor. 
A motivating factor for the live monitoring of mission plan progress and anomalies is increased 
operator SA and reduction of information overload. Measuring holistic plan health along with 
vehicle telemetry, mission tasks and plans can provide an at-a-glance summarization of current 
conditions. To that end, we have chosen an autonomics based approach, a self-managing process, 
whereby a C2 scenario is formally modeled and thresholds for acceptable mission plan and 
global values are established and evaluated. 
 
3.4.2 Software and Hardware Acquisitions 
 

The hardware and software utilized was covered in Section 4.1. 
 
3.4.3 Development and Implementation 
 

With autonomics selected as our technical approach, our next step was to establish the 
communication and translation of IMPACT data into model components. Due to the complexity 
of IMPACT plans, and in order avoid the time-consuming task of manually creating models, we 
developed a mechanism to dynamically generate model components from IMPACT data. 
Configuring these models with templates defined a priori, we established plan health and global 
constraint evaluation. Finally, a HMI was developed with information useful to a Test Operator 
in which a concept of Working Agreements was explored. 
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3.4.3.1 Autonomics 
 

Since the purpose of Plan Monitor is to provide feedback on the live monitoring of plans and 
anomalies, we chose to use an autonomics approach. Inspired by the human immune system, 
autonomics can monitor a system’s attributes to provide an automated response when an 
undesired system state is detected. Plan Monitor leverages the Rainbow Autonomics Framework, 
developed at CMU, which enables autonomous management of networks through: 

• the ability to dynamically monitor and analyze a network’s properties, 
• the ability to detect breaches on a network’s architectural design assumptions, and 
• the ability to effect changes on a network in response to breaches in design assumptions. 

 
Rainbow grants software architects the ability to establish a model of a network through the use 
of ACME, a formal architectural design language. The model reflects network properties and 
rules enforce a network’s design assumptions. Rainbow’s probes and gauges dynamically 
translate the state of the network into the model while strategies, tactics and effectors provided 
automated adaptation to effect changes on the network. A key observation in IMPACT is that the 
structure of a plan allows plans to be represented as networks thereby granting the ability to 
manage plans with Rainbow. 
 Since Rainbow is written in the Java programming language, Plan Monitor was 
developed in Groovy, a superset language of Java. Plan Monitor is an extension of the Rainbow 
framework and communicates with IMPACT through the network hub using ZeroMQ. Its 
software elements are as follows: 
 

• Model 
• Establishes components representing vehicles, tasks, areas of interests and zones. 
• Establishes components representing plans by connecting the components above to 

reflect plan structure. 
• Establishes templates, rules and thresholds ensuring the integrity of plans. 

• Probes 
• Subscribe to network hub and ingest relevant messages. Report data to appropriate 

gauges. 
• Gauges 

• Update components and properties in the model. May provide additional data 
processing. 

• Employ method to dynamically generate model components from network hub 
messages. 

• Strategies and Tactics 
• Call effectors to act upon detection of poor plan health. 
• Call effectors to act upon global constraint breaches. 

• Effectors 
• Publish plan health for display to the operator. 
• Publish constraint violation notifications for display to the operator. 
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3.4.3.2 Component Generation 
 

Since an IMPACT scenario can be complex with multiple types of plays, manually developing 
models for each case is non-trivial. To that end, Plan Monitor employs a method of generating 
model components and connections between components dynamically. Using the Java reflection 
API, LMCP object metadata read from the hub is used to generate corresponding structures in 
the model. 
 
An LMCP object to model conversion follows this pattern: 

• LMCP object is read from the hub. 
• Reflection tools collect field names, types and values (including those of parent classes in 

the object's class hierarchy) 
• Presence of an abstract model component (template) for that object's class is verified and 

generated if it does not exist. (This operation happens once per object type.) 
• Presence of a concrete model component (instantiation) for that object's instance is 

verified and generated from a template if it does not exist. (This happens once per unique 
object instance.) 

• Component is updated using object's field values if the values are different. 
 

This pattern allows for the generation of a model for any plan developed in IMPACT. 
 
3.4.3.3 Plan Health 
 

The primary function of Plan Monitor is providing plan health information to the operator. 
Through the constant monitoring and evaluation of plans we communicate their real-time status. 
Status falls within three categories: Nominal (Green), Lower Caution (Yellow) and Upper 
Warning (Red) with extent of deviation correlating to severity of status. Plans generally have two 
phases that Plan Monitor must consider: 

• En-route – Vehicle has been assigned to a mission plan and is on its way. Parameters 
include: 
• Fuel – Thresholds are set by templates in the model for each vehicle type. 
• Speed – Thresholds are determined by plan metadata – each plan includes a set of 

way points for vehicles to follow with each way point establishing expected vehicle 
speed. 

• ETE – Thresholds are cached upon instantiation of plan by using the distance 
between way points and expected vehicle speed. Real-time vehicle telemetry is 
compared to its expected position along the route establishing ETE quality. 

• On-Task – Vehicle has reached its destination and is performing its task. Parameters 
include: 
• Fuel – Thresholds are set by templates in the model for each vehicle type. 
• Speed and Task Quality – Thresholds are determined by type of task associated with a 

plan. 
 

On-Task health is determined by the tasks associated to a plan. Although there are over twenty 
available plays for an operator to use, they generally follow six patterns. Plan Monitor 
categorizes these plays by their purpose and characteristics in order to facilitate the calculation of 
plan health. Plan categories are as follows: 
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• Search Plan –vehicles focusing their cameras on points or lines in the world. 
• Watch Plan –vehicles focusing their cameras on a vehicle. 
• Escort Plan –vehicles maintaining a distance from a vehicle. 
• Cordon Plan –vehicles maintaining a distance from a point in the world (to section off an 

area). 
• Blockade Plan –vehicles maintaining a distance from a point in the world (to actively 

obstruct passage of vehicles). 
• Comm-Relay Plan – Special case as this plan is not called but generated to support a 

called play in need of communications relay. 
 

While the details involved in these patterns may vary (friendly vs non friendly vehicle targets), it 
is sufficient to measure On-Task health. For multi-vehicle plans, health for each vehicle is 
compared and the lowest quality parameters are combined into a single plan health update. 
 
3.4.3.4 Global Constraints 
 

A secondary function of Plan Monitor is effecting the IMPACT scenario through notifications. 
Currently, there are three types of notifications: 

• Fuel Notifications – A rule is established in vehicle model templates with each vehicle 
type defining its fuel threshold. A low fuel notification is published upon threshold 
breach. 

• Restricted Operating Zone (ROZ) Notifications – A rule is established in a strategy 
triggered upon the generation of a ROZ Violation component in the model. A ROZ 
violation notification is published upon vehicle or way point presence in ROZ. 

• Flight line Notifications – A rule is established in a flight line model template with 
location of flight line and vehicle response time thresholds. A flight line violation 
notification is published when there are no vehicles within time thresholds. 
 

These constraints are evaluated at all times, regardless of whether there are any on-going plays. 
 
3.4.3.5 Customized User Interface and Working Agreements 
 

Due to the generic qualities of Rainbow, its built-in HMI provides tools useful to developers of 
Rainbow applications. However, the end-user is likely not concerned with the information 
presented by these tools as they communicate actions relating to Rainbow’s internal processes. 
This provides an opportunity to explore a customized user interface with utility relevant to the 
network it is managing. 
 
Plan Monitor uses the GroovyFX API to establish and render its HMI. It features three sections: 

• A list with active plan data reflecting the name and type of plans currently monitored. 
• An event log providing detailed plan related activity. 
• A working agreements section enabling operator configuration of strategies. 
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Behind the scenes, a HMI is controlled through a Rainbow gauge (Figure 13). This gauge 
initializes the HMI and employs a visitor software design pattern to establish itself as a HMI 
controller. HMI components are tied to settings in the model and changes are communicated 
through the gauge. This link between HMI and model allows strategy selection to be controlled 
by means of rule conditions. Consider the following rule applied to vehicle templates: 
 

rule fuelRule = invariant !GUI_ALLOW_FUEL_UPDATES or EnergyAvailable > 
FUEL_CRITICAL; 

 
Here we ensure that vehicle fuel is above a threshold and observe how the 

GUI_ALLOW_FUEL_UPDATES property affects the rule. This property is tied to a checkbox 
component in the Working Agreements HMI section. If the checkbox is unchecked, the property 
value is false and disables the rule despite EnergyAvailable falling below threshold. Thus, 
disabling strategies tied to vehicle fuel status is by means of the HMI. This mechanism supports 
a goal in our work with autonomics which is to promote transparency and collaboration between 
human machine teams. Working agreements establish a policy dictating what the autonomy is 
allowed to do. A motivating factor behind this effort is the realization that a human operator may 
have critical information about the world that the autonomy does not. 
 
3.4.4 Capability Developed 
 

Through automated at-a-glance plan health evaluation and constraint notifications, Plan Monitor 
helps increase situational awareness and works to mitigate information overload. Since plan 
monitoring is performed autonomously, it has the potential to scale with increases in complexity. 
This capability is important now but will become more important in future scenarios as single 
operators supervise increasing numbers of vehicle platforms and concurrent mission plans. 
 
 
 

Figure 13: Rainbow Gauge HMI 
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3.4.5 Lessons Learned and Next Steps 
 

Since Plan Monitor is collecting streams of data from the network hub, it was a challenge to 
identify which data was necessary to accurately measure plan health. The current method takes 
into account the structure of a plan to establish plan quality but does not incorporate all related 
messages. For example, a plan’s constraints can be selected upon play calling which are then 
published to the network hub as additional messages. The generated plan will consider those 
constraints. A next step for Plan Monitor would be to listen to these constraint messages and use 
them when calculating plan health. This will likely increase the quality and accuracy of plan 
health. 

Another area for future research involves increased influence of autonomic adaptation. 
Currently, Plan Monitor is limited to affect the IMPACT scenario through plan reports and 
constraint notifications but it can potentially do much more. The ability for Plan Monitor to 
directly issue re-planning or directly call plays is possible through the use of re-plan and play 
calling strategies. These can be called upon the detection of poor plan quality, constraint or 
policy violations. Finally, by combining a third-party planner into play calling strategies, Plan 
Monitor could potentially call custom plays. 
 
3.5  Task Management  
 

3.5.1 Motivation and Technical Challenges 
 

The IMPACT scenario is reliant on the integrated interaction between autonomous systems and a 
human supervisor. This interaction generates a large number of tasks to be completed by the 
operator of the IMPACT C2 station. With the onset of a high volume of tasks, tasking can easily 
become overwhelming and disorganized, leading the operator to become less effective and 
focused in completing assigned tasks. To address these issues, a management system capable of 
determining user tasks, dividing tasks into a hierarchy, presenting tasks to the user, and 
providing a mechanism to execute an action for each task was developed. 

The tasks associated with this effort are tasks associated for execution by the human and 
not the autonomous vehicles for which the tasking is applied. Autonomous systems or agents can 
support the human within the management of the tasks in terms determining and sorting the 
tasks. In cases of high workload an autonomous assistant can off load tasks, based on some 
workload agreement as to when and how this would occur, and perform the functions of that 
task.  
 
3.5.2 Software and Hardware Acquisitions 
 

Software acquisitions required for the development of the Task Manager include Visual Studio 
Professional 2015, a development environment, and ReSharper a tool added to Visual Studio to 
help analyze code quality, eliminate errors, support code base changes, editing and compliance 
tools. Several computer systems were used to mirror the full IMPACT system in order to provide 
live demonstrations and integration test capabilities. For the design of the Task Manager these 
machines served a dual role as they also aided in both testing and development. 
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3.5.3 Development and Technical Approach 
3.5.3.1 Task Model 
Before discussing the implementation of the Task Manager, the basic structure for the Task 
Manager called the Task Model will be examined. The Task Model helps to structure tasks into a 
workable hierarchy that creates a clear delineation of the order in which a task is to be completed 
and the action points at which the user must give a supervisory decision in executing the task. 
The structure of the model used for Task Manager is a bipartite directed acyclic graph. The 
defined structure is based on a task-method-task paradigm. In this manner, tasks are decomposed 
into methods, which in turn are composed of subtasks. This task-method-task structure is shown 
in Figure 14. 

 
 

Figure 14: Task-Method-Task Structure for Task Model 
 

When a task is defined, it is either assigned to a human supervisor or an autonomous agent 
assisting the supervisor. In order to complete the task, the assignee must choose from one or 
more methods. The method may consist of one or more subtasks. This structure repeats 
recursively until no further subtasks are required to complete the task. The Task Manager utilizes 
this model when generating tasks. Each task may be broken up into one or more subtasks, while 
subtasks may be broken down into even more subtasks. Decision points occur when an operator 
must pick which subtask would be best utilized to complete a task. The method by which a task 
is executed is called a play. A play, in IMPACT, is a set of commands and guidelines the 
operator provides to an autonomous system. The successful execution of a play will complete a 
task or subtask. 
 
3.5.3.2 Task Manager Software Architecture 
 

Task Manager is an internal module of the IMPACT system and is written in the C# 
programming language. It utilizes the model-view-view-model (MVVM) software architecture 
pattern. MVVM provides a methodology to separate the HMI from the backend logic or data 
model. The layout of the HMI is provided by two Extensible Application Markup Language 
(XAML) outlines. The first is used to give the concrete layout of the Task Manager tile as seen 
in IMPACT. The second XAML file provides templates which can be applied for incoming 
tasks. The backend logic of the Task Manager consists of the following key components: 
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• Eventing 
• Provides notifications to other components regarding task status 
• Initiates functionality to add, remove, and move tasks from their respective 

repositories 
• Handles repeat task events 

• Processors 
• Processes asynchronous events, such as chat messages 
• Compares chat messages to regular expression definitions 
• Extracts chat messages by header or by room type 
• Creates tasks and subtasks 

• Tasks 
• Determines available plays for task type 
• Calls plays associated with task type 
• Populates play workbooks for specific tasks or methods 

• View Models 
• The primary logical components 
• Facilitate the function and usage of many of the other components 
• Determines display and sorting of tasks in repository 
• Executes interactions between user and backend logic 
• Source of data bound to HMI  

• Interfaces and Resources 
• Provide layout information to the HMI 
• Binds data from backend logic to the HMI 
 

3.5.3.3 Task Generation 
 

Determining an instance in which a task must be created requires the Task Manager to employ 
IMPACT’s networking hub. Tasks can be generated in a variety of ways. For instance, a query 
can be sent to an operator regarding an asset or whether a UAV can fly into a restricted area. 
Every event in IMPACT is forwarded through the hub. By parsing chat and notification 
messages that pass through the hub, it is possible to ascertain the required information needed to 
generate tasks. Task generation follows the subsequent pattern: 

• A chat message is received from a designated room in the IChat repository. 
• The contents of the message are compared to a map of regular expressions. 
• Each regular expression pattern provides an associated task definition. 
• If the message matches to a regular expression pattern, a task is instantiated by providing 

the task definition. This task is referred to as the parent task. 
• Any subtasks associated with the parent task definition are assigned to the parent task. 
 

Keywords in the chat messages help to determine the task category which in turn helps to 
determine the play type. For instance, if a chat message is received from by the Task Manager 
with the following text, “Unidentified watercraft heading towards the shore (Boat Golf) at 
30.427560, -87.145746,” a task is provided for the operator such as “Provide Overwatch.” This 
task can be completed by selecting a subtask to, “Call Point Search,” or to “Surveil Watercraft.” 
The current categories of tasks include intruder events, environmental events, vehicle failures, 
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base defense events, Random Anti-Terror Measures (RAMs) and queries. Other important 
information gathered from the task generation include time the task was assigned, time the task 
was completed, sequence number of the task, and the priority associated with the task category.  

A secondary method used to generate tasks is to parse message headers as messages pass 
through IMPACT’s networking hub using the ZeroMQ protocol. This method is employed for 
tasks generated by the occurrence of constraint and ROZ violations. In these cases, the message 
origin does not come from a chat room, but directly from the IMPACT hub. Messages from the 
hub are parsed and filtered to search for a specific header, “json:ML:Global.Notify”. When these 
messages are discovered, a task is generated in a similar manner to the pattern outlined above.  
 
3.5.3.4 Play Calling from Task Manager Interface 
 

An essential function of the Task Manager is allowing the operator the ability to call a play from 
a task listed in the Task Manager. Each task assigned to an operator in an IMPACT scenario 
requires the execution of a play for itself or a subtask in order to be completed. A task may have 
multiple play options available for execution. Many plays, such as queries, have a single 
associated option. Other plays, however, may have multiple methods in which it can be assigned. 
The plays associated with each task are determined by the Quick Reaction Checklist. When the 
user selects a play, the Task Manager will auto-populate a workbook that can be used to execute 
the chosen play. Play options are gathered from the metadata of the task and the workbook is 
spawned using IMPACT’s internal workbook spawner. Spawning the workbook required usage 
of some of IMPACT’s internal functions. 
 
3.5.4 Capability Developed 
 

By coalescing tasks into a singular point of reference, Task Manager helps to increase situational 
awareness, allows for quick actions to urgent events, and helps to focus many sources of 
information into a contained space. The user now has the ability to act upon tasks as they arrive 
or to act according to priority and Task Manager provides a means to quickly execute plays 
relevant to each task. As scenarios increase in scope and complexity, the role of the Task 
Manager will increase to better help balance workload, provide information, and efficiently 
execute actions.  
 
3.5.4.1 Entry Point for New Technologies 
 

Task Manager has added significant functionality to the IMPACT system. Two key areas have 
leveraged Task Manager as the entry point to introducing new and valuable functions that can 
greatly expand the capabilities of IMPACT. The first is the ingestion of new data messaging 
schemes. Specifically, Task Manager was used as the entry point to allow the ingestion of 
CBML data into the IMPACT system. This important advancement provides new avenues 
toward collaborations with research being conducted by our allies.  

Task Manager can also be an entry point into introducing new concepts in HAT. For 
integration into IMPACT, we developed autonomous search and detection algorithms with the 
intention of having a human-in-the-loop interaction to enhance the algorithm’s effectiveness. A 
scenario was developed where the algorithms were placed into an object detection operation. The 
idea being that one of the search algorithms would act as an autonomous agent sweeping an area 
for the target. An operator would be given the ability to interact with the agent, providing 
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information regarding possible locations of the object and to increase or decrease the probability 
of a target’s location at a given coordinate. 

Incorporating an interface through the Task Manager was successful and permitted 
operator interaction with the autonomous system. This was accomplished by subscribing to 
ZeroMQ messages that passed through the hub. When a HAT message is discovered a task is 
generated in the Task Manager. Through the task pane, the operator is able to interact with the 
autonomous agent by sending messages to the agent regarding the search area.  
 
3.5.4.2 Autonomous Assistant and Load Balancing 
 

The latest innovations currently being incorporated into the Task Manager involve helping the 
operator balance workload by tasking an autonomous assistant with extraneous tasks. The 
autonomous assistant provides the following services: 

• Receiving tasking in order to balance the load of the operator 
• Executing the allocated tasking 
• Alleviating operator tasking on lower priority or repetitive tasks 
•  

In the future, these responsibilities will expand to include: 
• Providing the operator feedback on task statuses or reminders for high priority tasking 
• Providing suggestions or data for decision points of crucial operator tasks 
• Adjusting load balancing of tasks to fine tune load balance for the operator 
•  

The autonomous assistant designed to be tasked in two ways. First, the operator can manually 
assign tasks to the autonomous assistant by simply clicking a button. Tasks can also be 
reassigned to the operator by selecting the task from the Autonomous Assistant’s task list. 
Second, the Autonomous Assistant may also be tasked via a simple load balancing algorithm. 
When the operator begins to be over tasked, lower priority tasks (such as queries) can be 
assigned to the Autonomous Assistant. When the Autonomous Assistant receives a task, it 
immediately executes the task in its queue. 
 
3.6 Human Machine Interface Design 
 

3.6.1 Motivation and Challenges 
 

Current interface design approaches are insufficient to support future envisioned unmanned 
systems missions, in which a single operator will collaborate with autonomous systems to 
manage multiple heterogeneous unmanned vehicles. These approaches often emphasize vehicle 
control rather than accomplishing tasks or completing mission objectives, an approach that 
doesn’t scale when an operator moves from controlling a single vehicle to controlling multiple 
vehicles. Existing approaches also provide little transparency into supporting autonomy, in 
contrast to Lee’s guidance to convey the system’s purpose, process, and performance (Lee, 
2012). Moreover, current human-machine interaction is typically rigid and inflexible, failing to 
provide support for trusted, bi-directional collaboration and high-level tasking between operators 
and autonomy (Lee and See, 2004; Hooper, Duffy, Calhoun, & Hughes, 2015).  

For joint human-autonomy teaming, the operator must maintain overall SA not only of 
system status and mission elements but also the intent of multiple systems themselves (Chen & 
Barnes, 2014). This includes providing the operator the status of the autonomy’s processing and 
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the rationale for its recommendations to help support a shared mental model of who is doing 
what (as well as when and why; Linegang, et al., 2006). An even more critical design challenge 
is efficiently supporting collaborative human-autonomy dialog (Gao, Lee, & Zhang, 2006), 
enabling the human operator and autonomy to suggest, predict, prioritize, remind, critique, 
and/or caution each other, especially in response to changing goal priorities and environmental 
conditions. The operator also needs the ability to drill into the autonomy, adjust its parameters, or 
override its operation (Calhoun, Goodrich, Dougherty, & Adams, 2016). This involves providing 
cognitive support and coordination mechanisms with respect to a skills, rules, and knowledge 
framework (Rasmussen, 1990).  
 Thus, improved controls and displays are needed to support operator and autonomy 
teaming. Taking into consideration the heterogeneous UxVs domain, these interfaces need to 
facilitate the retrieval of actionable information, generate shared awareness of operator and 
autonomy state/intent, and help heterogeneous members coordinate in task completion (Goodrich 
& Olsen, 2003; Ososky, et al., 2012). To ensure agility, the HMI must support a range of control 
options whereby the operator can, depending on mission demands, be ‘on the loop’ supervising 
UxVs as they autonomously carry out assigned tasks, as well as being ‘in the loop’, exercising 
tele-operation to precisely control a particular vehicle/sensor temporarily (Air Force, 2015). 
Moreover, several control modalities should be available for the operator to choose which is best 
suited for the task at hand (Oviatt, 1999; Draper, 2007). The interface paradigm also needs to 
support multi-UxV control to enable new capabilities such as wide area search cooperation, 
inspection with multiple perspectives, tracking of moving targets, and communication relay to 
mitigate intermittent communication issues (Eggers & Draper, 2006; Martinage, 2014). This 
effort aimed to develop a new interface paradigm that addresses the above identified challenges 
and enables agile teams to benefit from the autonomy technologies also being advanced in this 
effort.  
 
3.6.2 Software and Hardware Acquisitions 
 

The HMI were designed to complement existing controls and displays that constitute the basic 
Fusion simulation framework. All hardware and software acquisitions supporting the developed 
HMI are described earlier. Additional software was produced specific to the HMI as described 
below.  
 
3.6.3 Development and Implementation 
 

Development of the HMI approach relied heavily on cognitive task analysis data (collected from 
subject matter experts familiar with unmanned vehicle operations and/or base defense missions), 
information control and display requirements identified in analysis of the tri-service challenge 
scenario, and the capabilities afforded by the autonomy components (especially the intelligent 
agent). Also, perspectives addressing issues impacting human-autonomy teaming were 
considered (see Klein, Woods, Bradshaw, Hoffman, & Feltovich, 2004; Woods & Hollnagel, 
2006; Chen, Barnes, & Harper-Sciarini, 2011), as well as established human factors and 
ecological interface design principles (e.g., Vicente & Rasmussen (1992) and Kilgore & Voshell 
(2014)) in determining the content, layout and interaction metaphor of the new interface 
paradigm. The majority of the interfaces were designed to effectively support human rule- and 
knowledge-based behavior, given that the autonomy was anticipated to handle the majority of 
vehicle movement that is traditionally associated with skill-based behavior (Vicente & 
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Rasmussen, 1992). That said, a wide spectrum of control methods was implemented ranging 
from tele-operated (mouse/keyboard) control to high level plays that define the actions of one or 
more UxVs (Miller & Parasuraman, 2007). Intermediate methods involved interfaces that 
support the human and autonomy working together, with both making inputs to collaboratively 
plan or complete a task or play. An adaptable automation control scheme (Opperman, 1994) was 
utilized that extended a play-based approach from an earlier effort involving single operator 
management of multiple air vehicles (Calhoun, Draper, Ruff, Barry, Miller, & Hamell, 2012; 
Draper et al., 2013). This design perspective is also more aligned to a mission- and team-
centered approach whereby the human and autonomy collaborate in decision making and flexibly 
interact to share dynamic mission goals required for a base security defense scenario with multi-
domain resources. Use of this design perspective and implementation plan was realistic and 
effective for implementing HMI that supported the goals of the effort.  
 
3.6.4 Capability Developed  
 

This section will briefly describe the HMI implemented to support the play-calling control 
method. Each sub-section will describe how the interfaces were employed with mouse and/or 
touch input. (For most manual inputs there was a companion speech command that, if uttered, 
resulted in auditory and visual feedback to confirm the command was recognized. Also, the 
speech command resulted in the same control action and visual/auditory feedback had a manual 
modality been exercised). In this brief overview, the symbology employed across the interfaces 
will first be described. This will be followed by an introduction to the interfaces by which the 
operator calls a play, indicating the task type and location, relying on the autonomy to specify all 
other play details. Next the interfaces that enabled the operator and autonomy to work together to 
specify other play details will be illustrated. This will include interfaces by which the 
autonomy’s reasoning is communicated to the operator. Finally, interfaces that support the 
operator’s monitoring of play status and progress will be described. For further information, see 
Calhoun, Ruff, Behymer, & Mersch (2017) and Calhoun, Ruff, Behymer, & Frost (2017). 
 
3.6.4.1 Concise UxV/Play HMI Symbology  
 

The novel displays and controls feature video gaming type icons or pictographs (Nakamura, & 
Zeng-Treitler, 2012) to communicate UxV goals/states/progress in a concise, integrated manner 
and support the human’s direct perception and manipulation (Shneiderman, 1992). For instance, 
icons were designed to represent plays (and associated UxV type) for supporting the targeted 
base defense mission (Figure 15). The inner symbol (e.g., plus sign, line, and square) represent 
common mission requirements to surveil a location, route, and area with additional inner 
components for other base defense plays. The asset types are redundantly coded by shape and 
location on the outer circle. Employing the symbology across HMI and the multiple monitors in 
the IMPACT control station (Figures 1 and 2) supports maintaining the operator’s visual 
momentum (Woods, 1984) as information is retrieved and integrated. Visual momentum is 
further aided by mapping color-coding to plays such that all symbology associated with each on-
going play has a unique color. This also helps the operator maintain global perspective when 
discerning which UxVs on the map are coordinating on the same play.  
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Figure 15: Icons that Specify Plays and UxV Types 
 
3.6.4.2 Interfaces to Call Play Type and Location  
 

After extensive analysis, it was determined that only a few operator commands are required for 
the majority of plays likely to be called for the targeted base defense mission. At a minimum, the 
operator needs to communicate what type of play needs to be accomplished as well as the 
location of the play. Given these two pieces of information, the autonomy can recommend which 
one or more UxVs should accomplish the play, as well as other play details (route, speed, etc.). 
Selection of the location for the play is accomplished either by making a designation directly on 
the map or identifying the location in a pull-down menu of the base’s buildings and other 
landmarks. To specify what type of play, three dedicated play-calling interfaces were designed 
and implemented for mouse/touch manual input (Figure 16), in addition to the speech-based 
interface. With two of these, the operator interacts directly with the map to select either a 
location or a certain vehicle. This prompts a radial menu to appear on the map consisting of only 
the play options relevant to that location or vehicle (e.g., no ground based plays if a sea surface 
vehicle is selected). In a third interface, all available plays are available for selection. Play 
calling could also be achieved via control functionality integrated into the Task Manager that 
listed the pre-determined steps for most mission events communicated via chat (e.g., intruder at a 
certain gate).  
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Figure 16: Three Interfaces to Specify Play and UxV Type 
 
3.6.4.3 Interface to Specify Play Details  
 

Operator specification of play type and location supports a goal-based approach, with the 
operator expressing intent rather than directing the actions of individual UxVs. However, 
especially in light of dynamic missions, it is useful at times for the operator to communicate 
additional play requirements to the autonomy, either during play calling or after the play has 
started. Thus, interface mechanizations are needed whereby the operator can efficiently input any 
play related detail through a “Play Workbook Interface” (besides utilizing speech commands).
 To accomplish this, the most likely details to be specified by the operator when calling a 
play, and also the most useful to the autonomy in terms of constraining the candidate solutions 
for the current mission situation, were identified. These were designated as “pre-sets” and were 
made the most accessible details in the Play Workbook. As shown in Figure 17, each of these 
was made available via a selectable concise icon in the right page of the Workbook. Selection 
options were grouped in rows as follows: size of the target, current environment around the 
target, optimization factor(s) to consider when proposing a plan for a play (e.g., minimize fuel 
usage or arrival time), and the play’s priority. The Workbook also provides quick access for the 
operator to specify a required payload (sensor and/or weapon), which are hard constraints that 
drive the autonomy’s asset assignment. 

Besides the pre-sets described above, other play-related details are available on other 
Workbook pages. By changing between different pages of details via the tabs at the bottom of 
the right page, the operator can, for example, specify the loiter shape or change the allocated 
asset(s) that the autonomy recommended. Utilizing other control functionality, multiple plays 
can be chained together (e.g., each uses the same asset, with the second play commencing when 
the first one terminates or specifying the sequence for chained plays using different assets). Also, 
other temporal details can be specified like scheduling a play’s start time, end time, and/or 
duration. 

Once the operator has designated play type and location, the autonomy determines and 
recommends at least one plan for the play (unless the operator’s constraints cannot be satisfied, 
such as there is no available asset with the specified payload). Via a Workbook selection or 
speech command, the operator can initiate the play. Alternatively, the operator can specify 
additional details either before or after the play has initiated that will prompt the autonomy to 
generate an updated play plan(s).  
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Figure 17: Play Workbook and Proposed UV Route on Map 
 
3.6.4.4 Interfaces to Review Play Plans and Autonomy’s Rationale  
 

The HMI design enables the operator to review the basis of the autonomy’s proposed play 
plan(s) and rationale. The icons highlighted in the Workbook communicate what constraints the 
autonomy considered in generating a play plan (Figure 17). The proposed asset(s) and route 
plans are also illustrated by uniquely colored symbology on the map (dashed until the plan is 
accepted) and rationale for autonomy’s recommended plan can be accessed by opening a 
window adjacent to the Workbook (Figure 18). A Plan Comparison Interface can also be called 
up that illustrates trade-offs across multiple autonomy-generated plans as a function of several 
mission constraints (Figure 19; Hansen, Calhoun, Douglass, & Evans, 2016).  
 

 
 

Figure 18: Window Showing Autonomy’s Rationale for Proposed Plan 
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Figure 19: Plan Comparison Interface showing Trade-off of Several Candidate Plans 
 
3.6.4.5 Interfaces to Monitor and Manage Multiple Plays  
 

All active plays can be monitored by watching the movement of symbols representing each UxV 
along routes on the maps. Information is also presented for each play and ongoing patrol in a row 
within the Active Play Table (Figure 20), along with control functionality to cancel or pause each 
play. Selection of a row in the Active Play Table calls up the Workbook (Figure 15) associated 
with that play, as well as a Play Quality Matrix (Figure 21) that provides feedback on the 
ongoing play through autonomics algorithms. Deviation of each bar from the center of the 
matrix, as well as color (green, yellow, red) indicates whether the associated mission parameter 
is within, above, or below its expected operating range.  
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Figure 20: Active Play Table 
 

 
 

Figure 21: Play Quality Matrix 
 

An Inactive Play interface consisting of two tables was designed to supplement the 
Active Play interface (Figure 22). The “Not Ready” table on the left contains plays that the 
operator has called, but the plays cannot begin yet because one or more constraints are not met 
(e.g., required sensor or UxV type not available). Plays that the operator has called with the 
intent of activating them later in the mission when resources are available are included in this 
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table. In contrast, the “Ready” table on the right lists plays that have the required resources and 
are waiting for the operator to consent for the play to begin, or the operator has specified a 
specific time for the play to begin. The Ready Table also includes plays that were paused by the 
operator if the resources are still available.  

The Active, Not Ready, and Ready Play Tables provide the operator with control 
functionality to quickly pause, initiate, and cancel plays, instead of calling up the Play Workbook 
to exercise these functions. The operator can also chain plays and designate a “Not Ready” play 
to automatically become active when an asset becomes available, without it first moving to the 
Ready Table to wait for the operator’s consent input. 
 

 
 

Figure 22: Inactive Play Table Showing ‘Not Ready’ and ‘Ready’ Plays 
 

3.6.5 Component Testing  
 

A more detailed explanation of the HMI design process is available (Calhoun, Ruff, Behymer, & 
Frost, 2017). Early notional HMI concepts were illustrated in PowerPoint to support reviews 
accomplished by interface specialists trained in human factors and ecological design principles. 
These discussions resulted in some early concepts being discarded or refined. Next, a subset of 
control and display designs were mocked up in low-fidelity test apparatus and evaluated by 
participants without UxV or security mission experience. These experiments typically employed 
a single-task paradigm focusing on one aspect of play management. For example, there were 
individual experiments addressing: methods for communicating UxV play status (Behymer, 
Ruff, Mersch, Calhoun, & Springs, 2015), visualizations for operator comparison of autonomy 
recommended plans (Behymer, Mersch, Ruff, Calhoun, & Spriggs, 2014), and the design options 
for a video game inspired interface for calling plays (Mersch, Behymer, Calhoun, Ruff, & 
Dewey, 2016). Typically, candidate display formats were briefly presented and participants’ 
accuracy and speed in retrieving information or making a control input were measured.  

The results of these “component tests” drove the interface designs implemented in the 
IMPACT virtual lab station and evaluated by subject matter experts (see Section 6). For the first 
full scale evaluation, four play-based interfaces were included (two play calling interfaces 
(speech and one manual approach), one interface for specifying play details, and one table 
showing active plays with the option of calling up additional play and vehicle status 
information). The design supported management of 6 UxVs with 13 plays besides the normal full 
coverage patrol. In the second full scale evaluation, there were four means of calling plays with 
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manual inputs (in addition to speech-based control), a refined method to specify play details, a 
visualization depicting play status/progress, multiple tables showing the status of inactive, ready, 
and active play states, as well as two interfaces that provided additional insight into the 
intelligent autonomy agent’s reasoning. These twelve interfaces were designed to support 
management of 12 UxVs, with 25 base defense related plays and two types of patrols. Section 6 
provides additional detail on the methodology and results of these evaluations. In general, results 
were very positive, demonstrating that the utilized design approach helped ensure that the HMI 
reflect recommended human factors principles with the goal of better supporting how the 
operator and autonomy can jointly manage UxVs responding to mission events. In fact, one base 
defense expert commented that “each piece of the [interface] suite serves a purpose and is value-
added for assisting the operator to accomplish the mission.” The results also showed, however, 
that mouse and keyboard inputs were far more efficient manual inputs than use of the touch input 
modality (with the exception of zoom/map view manipulations; Calhoun, Ruff, Behymer, & 
Rothwell, 2017).  
 
4 DETAILED TECHNICAL APPROACH:  ADDITIONAL RESEARCH ACTIVITIES 
 

4.1 Agent Transparency Studies 
 

4.1.1 Motivation and Challenges 
 

Past research has demonstrated that human operators sometimes question the accuracy and utility 
of intelligent agents when operators lack insight into the intelligent agent’s rationale; this can 
lead to reduced use of the intelligent agent and subsequent loss of performance (Linegang et al., 
2006). Researchers have suggested that, to support operator SA of the intelligent agent within a 
tasking environment, the agent needs to be transparent about its reasoning process and projected 
outcomes (Lee & See, 2004). To guide the development of agents that communicate 
transparency, Chen et al. (2014) proposed a model of agent transparency (Figure 23) to support 
operator SA: SA-based Agent Transparency (SAT). The SAT model uses insight from the theory 
of SA (Endsley, 1995), the BDI (Beliefs, Desires, Intentions) Agent Framework (Rao & 
Georgeff, 1995), Lee’s 3P’s (Purpose, Process, Performance; Lee, 2012), and other previous 
work (Chen & Barnes 2012a, 2012b) to guide the structuring of transparency information offered 
by intelligent agents. The first SAT level (L1) stipulates that the interface provide the operator 
with the basic information about system capabilities and limitations, current state, mission goals 
and intentions, and the agent’s proposed actions (i.e., proposed plans or “plays” that can be 
executed to fulfill mission goals). At the second SAT level (L2), the operator is provided with 
the agent’s rationale for recommending a particular play, including the weighing of capabilities 
and limitations, and the perceived trade-offs between different plays. At the third SAT level 
(L3), the operator is provided with information regarding the projection of future states and the 
certainty, or uncertainty, with which these projections are made. For the purposes of this project, 
transparency was operationalized and tested as existing at each of these three levels. 
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4.1.2 Software Acquisition and Development 
 

To isolate the effects of transparency at its various levels, a testbed was developed which 
emulated the Fusion testbed, but with hard-coded, modular components for manipulating the 
type and amount of transparency information shared with users. This testbed was used for all 
three years of experimentation, and allowed for yearly upgrading in order to meet requirements 
for testing the effects of transparency in a multi-UxV management task consistent with that 
studied by the IMPACT project as a whole. The final testbed can be seen in Figure 24. 

 

 
 

Figure 24: Emulated Fusion Interface used for the ARL Experimental Studies 
 
4.1.3 Development and Implementation 
 

A total of three studies were completed to examine the effectiveness of agent transparency in 
facilitating performance and appropriate trust calibration. The first two of these studies 
manipulated only transparency according to the SAT model (discussed above), while the final 

Figure 23: SA-based Agent Transparency (SAT) Model  
(Chen et al., 2014) 
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study examined transparency framing in addition to a transparency level manipulation. Each of 
these studies are discussed below. 
 
Studies 1 & 2: Methods. To investigate the three questions introduced in the “Background” of 
this section, we designed two experiments, each with three within-subjects conditions of 
transparency administered in blocks of mission scenarios (conditions were counterbalanced to 
prevent order effects; see Table 1 for conditions implemented). During the these experiments, 
participants assumed the role of a multi-UxV system operator whose task was to monitor and 
direct vehicles to carry out missions assigned to them by a simulated commander. Operators 
managed a team of six UxVs: two UAVs, two UGVs and two USVs, in collaboration with an 
intelligent agent which communicated play options to the operator for completing the mission. 
To complete missions, operators had to interpret their commander’s intent, understand vehicle 
and environmental constraints, and ultimately, decide whether to follow the intelligent agent’s 
play-calling suggestions.  

During each of these decisions, operators’ performance (based on the criteria in Table 2) 
and response time were monitored by the simulation. After each block of events, we surveyed 
participants for information including their perceived workload, perceived interface usability, 
and their trust in the intelligent agent. 
 

Table 1. Transparency SAT Levels (SAT levels are additive). 
Study 1 Study 2 

SAT Level Display Components SAT Level Display Components 
L1 Map icons, plan details icon, 

and path show basic 
information 

L1+2 Map icons, path, line graph, 
and text show basic 
information 

L1+2 Sprocket pie graph and text 
add reasoning information to 
display 

L1+2+3 Sliding points on line graph 
and extra text add reasoning 
and projection 

L1+2+3(+U) Opacity of sprocket pie graph 
varied and extra text add 
projections including 
uncertainty 

L1+2+3+U Opacity of map icons and 
graph points varied, and extra 
text add assumptions and 
uncertainty 

 
Table 2. Performance according to intelligent agent suggestion and operator choice of plans. 

Performance 
Criterion 

Correct 
Plan 

IA 
Suggestio
n 

Operator 
Choice 

Proper IA Use A A A 
Correct IA 
Rejection 

B A B 

 
Study 1: Results. Results from study 1 (Mercado, et al., 2015; Mercado, et al., 2016) indicated 
that proper intelligent agent use and correct rejection were both significantly greater when 
participants were presented with SAT L1+2+3(+U) and L1+2 compared to L1. The greatest rates 
of proper intelligent agent use and correct rejection were found in L1+2+3(+U), suggesting that 
calibration of intelligent agent reliance is better when operators are presented with all three levels 
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of transparency by the agent. We found no significant differences for response time or workload, 
allaying concerns that higher levels of transparency might result in longer decision making time 
and greater operator effort. 
 
Operator trust in the intelligent agent was analyzed after the first block of interactions as a 
between subjects variable, and examined it across two levels: the intelligent agent’s analysis of 
the information, and the IA’s ability to suggest and make decisions. There were no significant 
differences across SAT level for trust in the intelligent agent’s ability to analyze information. 
However, we found that operator’s trust in the intelligent agent’s ability to suggest and make 
decisions significantly increased as transparency increased. Specifically, participants felt the 
intelligent agent made decisions that were more accurate when presented with L1+2+3(+U) as 
compared to L1+2 or L1. We also found a significant effect of SAT level on the perceived 
usability of the intelligent agent’s interface; the intelligent agent was perceived to be the most 
usable when presented with L1+2+3(+U). 
This study differentiated basic information (L1), reasoning (L2), and future projections (L3) in 
accordance with the SAT model. As such, we examined communication of the agent’s 
projections and the agent’s uncertainty in its projections as part of SAT L3 information level. 
However, due to this combination, the unique role of uncertainty in affecting operator decision 
was unclear. Study 2 filled this gap by parsing out uncertainty from other Level 3 information in 
the L1+2+3(+U) condition and adding another condition that included projection without 
uncertainty information: L1+2+3. For study 2, the L1 condition was eliminated (see Table 1 for 
condition listing). 
 
Study 2: Results. Results from study 2 (Stowers et al., 2016; Stowers et al., 2017) indicated that 
proper intelligent agent use and correct rejection were both significantly greater when SAT 
L1+2+3+U was presented compared to L1+2. The L1+L2+L3 condition did not significantly 
differ from either of the other conditions. As L1+L2+L3 did not significantly differ from the low 
transparency condition without the addition of uncertainty information (+U), these findings 
support the conclusion that operators were most likely to make correct decisions when they were 
presented with all three levels of transparency as well as uncertainty. As was the case in study 1, 
operators did not experience greater workload as the amount of agent transparency information 
increased. However, unlike study 1, there was a significant difference in response time between 
L1+2 and L1+2+3+U (which corresponds to L1+L2+L3 in study 1), with L1+2+3+U taking the 
longest for participants to complete. This was not unexpected, as an increase in information on 
the display should naturally take longer to process. Though significant, this response time 
increase between the lowest and highest conditions was somewhat small (around 5.5 seconds). 
Contrary to study 1, in which we only analyzed trust after a single interaction with the interface, 
for study 2 we analyzed operator trust per condition as a within subjects variable while also 
controlling for the effect of pre-existing implicit associations. Unlike study 1, there was a 
significant difference across SAT level for trust in both the intelligent agent’s ability to analyze 
information and the intelligent agent’s ability to suggest and make decisions. Specifically, 
participants trusted the intelligent agent’s ability to analyze information most when presented 
with L1+2+3+U, while they trusted the intelligent agent’s ability to suggest decisions most when 
presented with L1+2+3. We also found a significant effect of SAT level on the perceived 
usability of the intelligent agent, where the intelligent agent was perceived to be the most usable 
when displaying L1+2+3 and the least usable when displaying L1+2+3+U. This perception is 
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consistent with the participants’ trust in the intelligent agent’s ability to make decisions, where 
their trust and perceived usability peaked at L1+2+3 and decreased when uncertainty was added 
to the interface. This finding adds further support to the idea that usability may impact trust, or 
that there is at least a relationship between usability and trust regarding perceptions of intelligent 
agents. 
 
Study 3: Transparency Framing. Agent transparency communication that draws attention to 
certain types of information could be thought of as a type of framing, or structuring of 
information. This framing may induce a bias in the operator’s perception of the agent, which 
could be used to calibrate operator reliance on the agent. An example of this is attribute framing, 
in which an attribute of an object is described in either positive or negative proportions (e.g. the 
glass is half empty or half full). Historically, research has found that framing affects evaluations 
of objects, but it is not understood how the framing of something abstract, such as choice 
parameters, affect decision making. In the context of our study, where a human operator is 
making a decision (i.e. “play-calling” in the context of multi-UxV management) based on a set 
of parameters presented by an intelligent agent, positive or negative framing of the operator’s 
decision by the agent may affect the human operator’s trust and perception of the agent. 
The overall goal of the final study was to understand the interaction between level of agent 
transparency communication, according to the SAT model, and the agent’s framing of 
communication. We expected trust and evaluation of the agent to be higher with a high 
transparency interface than with a low transparency interface. When the agent is more 
transparent, and critical of the participant’s plan decisions (critical framing), it should be 
perceived better and trusted more than a complimentary agent because it highlights reasons for 
error. On the other hand, we expected that when the agent is a more opaque, a complimentary 
agent would increase trust in the agent more than a critical agent would. An opaque agent 
provides less insight into possible shortcomings of its recommendations, which may result in 
lower perceptions and trust of the agent, but the agent’s complimentary nature may help to offset 
negative evaluation of the agent. 
 
Study 3: Method. To date, twenty-nine students from an American university were recruited for 
cash payment. Data were analyzed for 26 (17 men, 12 women, Mage = 20.03, SDage = 2.09). Three 
were omitted from analysis due to technical issues. 

This experiment involved a 2x2 mixed design with agent transparency as the within-
subjects independent variable and communication framing as the between-subjects independent 
variable. Agent transparency was tested at two levels: (a) L1+2: containing reasoning 
information, and (b) L1+2+3+U containing reasoning and projection with projection uncertainty 
information. Communication framing was tested as two contrasting attitudes from the agent: (a) 
Critical: highlighting a parameter of the chosen plan that is not satisfied, and (b) Complimentary: 
highlighting a parameter of the chosen plan that is optimal. The HMI varied per condition by 
showing corresponding pieces of SAT-level information on a map display, in text, and on a 
sliding bar scale. Prior to the experimental trials, participants received about 1 hour of training. 
The experiment was divided into 2 blocks of 8 missions. Transparency order and communication 
framing were counterbalanced within sets of four participants, within which the scenarios where 
the agent’s recommendations were correct and incorrect were held constant. The choice of 
correct and incorrect scenarios was randomized for each set but kept the 5 correct and 3 incorrect 
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ratio. Performance and trust were recorded as done in studies 1 and 2. Additionally, perceived 
agent aptitude was recorded as a subset of trust. 
 
Study 3: Preliminary Results. There were no significant task performances differences. However, 
for agreement with the agent, there was a main effect for transparency, as well as an interaction 
between transparency and framing. Agreement with the complimentary agent was consistent 
between transparency conditions. In contrast, agreement with the critical agent was higher in the 
low transparency automation condition than in the high transparency condition. 

With regard to trust in the agent’s ability to integrate and display analyzed information, 
survey results revealed a significant main effect for transparency. There were no other significant 
findings, but a trend suggests the possibility of an interaction between transparency and framing 
were there more statistical power. Participants were relatively distrustful of the low transparency 
complimentary agent. There were no significant findings from the trust survey with regard to the 
agent’s ability to suggesting and making decisions. 

There were main effects of both transparency and framing, and a non-significant 
interaction trend between the variables for perceptions of agent aptitude with regard to 
integrating and displaying information. Regarding perceptions of agent aptitude in suggesting 
plan decisions, there were also main effects for transparency and framing but an interaction was 
not significant (p > .10). In both cases, participants perceived the agent to be more apt when 
transparency was high and when the agent framed the update plan critically. For suggesting 
decisions, the interaction was driven by the difference between the low transparency 
complimentary condition and the other three conditions. There were no significant (or trends of) 
differences between condition in perceived automation reliability (p > .10). 
 
4.1.4 Lessons Learned and Next Steps 
 

Results from the 3 studies completed as part of this project yielded several insights to the utility 
of transparency, as well as best practices for implementing information transparency as part of an 
intelligent agent’s interface. Primarily, it was found that agent transparency, as operationalized 
and implemented according to Chen et al.’s SAT model, is useful for improving performance in 
complex decision making such as that done in multi-UxV management tasks. Additionally, this 
performance is increased without a cost to workload. However, it should be noted that response 
time does increase for a few seconds, which may or may not create an issue depending on the 
mission environments. 

The final study reported yielded insights to the possible importance of framing of 
transparency information. Participant agreement with the critical agent being higher in the low 
transparency automation condition than in the high transparency condition suggests that framing 
of information may be particularly important in situations when an agent is less transparent about 
its projection and uncertainty. Further examination of this effect in a separate study that isolates 
framing can yield insights to the effects of agent behavior on human decision making. 
 Overall, increased levels of transparency led to partially increased trust (in specific 
capabilities of the intelligent agent) in the first two studies, while there was an interaction 
between transparency and framing regarding trust in study 3. The findings in study 3 are 
particularly important to consider, as they show that a critical agent may be more trusted, 
perceived more positively, and agreed with more frequently. This shows that the way in which 
transparency information is presented can have an impact on trust calibration. Further 
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examination of critical versus complimentary framing of information may show why this is the 
case. 

The results of studies highlight the importance of considering variables in addition to 
performance (e.g. trust, workload) when studying human interaction with intelligent agents; 
especially as these variables may be useful for predicting the success an operator may have when 
interacting with intelligent agents. For example, if operators are over- or under-trusting, they 
may over- or under-rely on intelligent agents, to the detriment of the mission. 

These studies have also highlighted that, in addition to considering transparency when 
designing intelligent agents, it is important to consider both the usability and behavior of 
intelligent agents in order to increase the likelihood of appropriate use and prevent undue burden 
from being put on operators. More research is needed to make refined design recommendations 
that incorporate usability and agents behaviors in this way. Furthermore, additional research is 
needed which explores human-agent teaming in a more bidirectional manner. 

Future studies will examine human-agent teaming with bidirectional communications to 
evaluate the utility of SAT-based interfaces in a dynamic manner (Chen et al., 2017). This can be 
used to inform the design of field research being done with finalized intelligent agents that are 
capable of behaving independently. Additional efforts will also focus on developing a repository 
of HMI design elements (e.g., visualizations) to support SAT-based interfaces. 
 
4.2 Human Workload and Attention Model Development  
 

4.2.1 Motivation  
 

The overall goal was to develop a real-time, online, predictive model of human operator 
automation monitoring. As automation capabilities increase, human operators need to be able to 
understand what the automation is doing while monitoring automation progress. This monitoring 
process can become quite boring when automation is performing well, but is a necessary job for 
humans who supervise automation systems. There are many instances of human operators not 
monitoring automation, which can lead to disasters.  

The overall approach was a mix of experimental data collection and model building. A 
complex automated system, Research Environment for Supervisory Control of Heterogeneous 
Unmanned Vehicles was modified for these studies. In these experiments, the automation was 
helpful and successful much of the time (80% or more in some cases), but at times it behaved in 
an unexpected manner (e.g., it sent a UAV to an undesired location). Data was then collected on 
how human supervisors used the automation when it performed in an unexpected manner, how 
they dealt with automation failure, and how long it took them to identify and correct any 
automation failures. A critical aspect to this modeling work was the ability to measure where 
supervisor’s visual attention was, so an eye-tracker was used to collect visual information while 
they were performing the task. 
 
4.2.2 Software and hardware acquisitions 
 

A series of models were produced that were able to predict when operators were likely to miss 
automation failures. These models have been implemented in both formal and computational 
forms. 
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4.2.3 Development and Implementation  
 

A series of experiments were planned that explored how long it would take human supervisors to 
notice an automation failure, and then how they would correct the automation itself. A large 
amount of data was analyzed, including action protocols, eye-movement data, decisions, and 
reaction time. 
 From previous work in this area, it takes approximately three years to build a model of 
this complexity. Data collection, analysis, model building, and model validation are time 
consuming yet critical to the success of any model building effort. Given this expectation, the 
implementation was extremely realistic and effective. 
 
4.2.4 Capability Developed  
 

A model was successfully developed of when a human supervisor may be performing poor visual 
scanning. Poor visual scanning leads directly to missed automation failures, which was 
operationally defined as critical for this effort. This model is predictive, it runs in real-time, and 
has high accuracy. While a variety of different models were developed, one in particular will be 
highlighted. That model, called the meta-knowledge model, used three different predictors (last 
look, wait time queue, and available time; details available in separate publications). These three 
different predictors were able to predict 84% of missed automation failures (TPR) while only 
3.8% were incorrectly categorized. These results reveal a c statistic of .97 (excellent) and a d’ of 
2.7 (excellent). These results suggest that the model is a viable model for automated system, 
since most automated systems need a d’ of at least 2.0 to be functional. 
 
4.2.5 Component Testing 
 

Several individual experiments were conducted throughout the project. Over 200 participants 
were run across 6 different experiments. 
 
4.2.6 Lessons Learned and Next Steps  
 

There were several obstacles that were overcome. One obstacle consisted of the large variability 
of eye-tracking data. There is a known lack of research in how to account for eye-movements 
during dynamic tasks (e.g., where should a fixation be recorded as an object is moving?). 
Second, a real-time system to track and follow eye-movements needed to be created. Finally, 
determining how to create automation failures that were experimentally reasonable for the 
participants required some solutions. All of these problems were addressed through 
computational, modeling, and pilot testing methodologies. 
 
4.3 Play Synthesis from Temporal Logic Specifications 
 

4.3.1 Motivation and Challenges 
 

The primary goal of the ARPI was to encourage development and deployment of high levels of 
autonomy in DoD systems. However, a practical barrier to deployment of such systems is a lack 
of feasible verification & validation (V&V) approaches. Current approaches often amount to 
exhaustively testing all possible system behaviors, which is intractable for highly autonomous 
systems. Therefore new approaches for V&V are required, e.g. based on mathematical analysis 
of system requirements and designs at various levels of abstraction, including the level of 
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autonomous reasoning. One such class of V&V approaches focuses on automated synthesis of 
“correct-by-construction” system designs from specifications. 

Toward this end, early work focused on automated verification and synthesis of mission 
plans for teams of unmanned vehicles. In this work, methods were developed to express mission 
requirements as temporal logic specifications, check that specifications are satisfiable (Kim & 
Humphrey, 2015), then either automatically verify human-generated plans against them or 
synthesize plans guaranteed to meet them (Humphrey, 2014). With IMPACT, these concepts 
were extended to address several new challenges including: 

1. Increasing the reactivity of plays by synthesizing decision logic to change play behavior 
in response to mission events, with desired behaviors encoded in formal specifications. 

2. Increasing synthesis ease of use by providing a template-based approach for developing 
formal specifications. 

3. Implementing synthesis in IMPACT by integrating with the intelligent agent and UxAS. 
4. Developing a design approach that supports V&V of autonomy. 
 

4.3.2 Software and Hardware Acquisitions  
 

SLUGS (SmalL bUt Complete GROne Synthesizer) was used to perform synthesis from GR(1) 
specifications. SLUGS is available at https://github.com/VerifiableRobotics/slugs and is free to 
use. 
 
4.3.3 Development and Implementation 
 

The IMPACT ARPI brought together several groups with different approaches for implementing 
autonomy. During the early stages of IMPACT, we considered formalizing specifications for 
plays in temporal logic and synthesizing plans for play-based missions using an approach similar 
to the one developed for planning multi-vehicle surveillance missions (Humphrey, 2014). This 
approach encodes mission goals and constraints in linear temporal logic (LTL) and uses model 
checking to synthesize a feasible plan. LTL extends propositional logic with temporal operators 
according to the grammar 

𝜑𝜑 ≔ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | 𝑎𝑎 | 𝜑𝜑1 ∧ 𝜑𝜑2 | ¬𝜑𝜑 | ◯ 𝜑𝜑 | 𝜑𝜑1 ∪ 𝜑𝜑2 
where 𝑎𝑎 is an atomic proposition that evaluates to 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 or 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. LTL formulas include standard 
and derived propositional operators, e.g. ∧ “and”, ∨ “or”, ¬ “not”, and → “implies”. They also 
include standard and derived temporal operators ◯ “next”, ∪ “until”, □ “always”, and ◊ 
“eventually”, where ◯ 𝜑𝜑 holds if 𝜑𝜑 holds in the next state, 𝜑𝜑1 ∪ 𝜑𝜑2 holds if 𝜑𝜑2 holds in the 
current state or some future state and 𝜑𝜑1 holds in all states until then, □ 𝜑𝜑 holds if 𝜑𝜑 holds in the 
current and all future states, and ◊ 𝜑𝜑 holds if 𝜑𝜑 holds in the current state or some future state. 
LTL formulas can easily specify tasks that must be performed, constraints on the relative 
ordering of tasks, and conditions that should always hold or never hold, e.g. remaining inside 
“keep-in” zones or staying out of “keep-out” zones. 

While synthesis from LTL specifications works well for certain applications, other 
groups had approaches that were better suited to the early needs of IMPACT. In particular, the 
intelligent agent framework provides a more elegant solution for determining which vehicles are 
most appropriate for a given play call, and UxAS is better able to account for vehicle dynamics 
in path planning and in plays that require multi-vehicle trajectory coordination. We therefore 
shifted in the second year toward alternative applications of synthesis in IMPACT, including 
synthesis of plays that react to human operator inputs during play execution (Feng, Wiltsche, 

https://github.com/VerifiableRobotics/slugs
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Humphrey, & Topcu, 2015) (Feng, Wiltsche, Humphrey, & Topcu, 2016). However, such 
approaches require relatively detailed models of particular types of human behavior, which were 
not forthcoming.  
 In the middle of the second year, efforts shifted toward synthesizing plays that react to 
mission events. Reactive synthesis approaches were employed, focusing on synthesis from 
generalized reactivity (GR(1)) specifications. In general, reactive synthesis approaches focus on 
automatically generating decision logic that guarantees correct system operation in dynamic 
environments. Reactive synthesis specifications take the form 

𝜑𝜑𝑒𝑒 → 𝜑𝜑𝑠𝑠 
where 𝜑𝜑𝑒𝑒 specifies possible behaviors of the environment, and 𝜑𝜑𝑠𝑠 specifies system behaviors that 
must hold given 𝜑𝜑𝑒𝑒. In IMPACT, we took the environment to be certain unexpected mission 
events that were tentatively planned for the third year demo, e.g. vehicles running out of fuel, 
losing communication, and finding enemy targets. We then synthesized decision logic to change 
a vehicle’s behavior in response to these types of events. The result is a “reactive play,” which is 
in some sense implemented as an event-triggered “play of plays”. 
 
4.3.4 Capabilities Developed 
 

In creating an approach for synthesizing reactive plays from temporal logic specifications, 
several new capabilities were developed. These include reactive plays, a template-based 
approach for developing temporal logic specifications, and an IMPACT-compatible 
implementation that makes use of the intelligent agent framework and UxAS. Furthermore, the 
overall approach contributes to the broader goal of V&V of autonomy. These points are 
described in greater detail in the following subsections. 
 
4.3.4.1 Reactive Plays 
 

As previously mentioned, reactive plays were synthesized from GR(1) specifications. Such plays 
react by automatically changing vehicle behaviors in response to events in the environment. 
Consider the situation in which an air vehicle should explore a region, track a target if it is found, 
and refuel if its fuel runs low, as depicted in Figure 25 and described in (Apker, Johnson, & 
Humphrey, 2016). We synthesized a play to implement this behavior and simulated it along with 
other more complex reactive plays in AMASE using the IMPACT framework. 
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Figure 25: Behavior of an Example Reactive Play 

 
4.3.4.2 A Template-Based Approach for Temporal Logic Specifications 
 

A common criticism of temporal logic specifications is that it requires significant expertise to 
understand them. However, we found that many specifications of interest in IMPACT follow 
relatively simple patterns, leading us to formulate a pattern-based approach for developing 
GR(1) specifications. In particular, a common specification pattern includes a primary play that 
is executed in nominal conditions, a secondary play executed in response to a particular mission 
event, and a contingency play executed if something goes wrong. In (Apker, Johnson, & 
Humphrey, 2016), we developed a template-based approach for specifying the primary, 
secondary, and contingency plays and the events and conditions that trigger them, as in the 
example from the previous subsection. 
 
4.3.4.3 Implementation with the Intelligent Agent and UxAS 
 

The result of synthesis from GR(1) specifications is a control protocol that describes actions a 
system should take in response to events in the environment. A control protocol is a specific case 
of the underlying formalism used in the intelligent agent’s behavior models. Simple routines 
were written to translate synthesized reactive plays into agent behavior models and we 
implemented supplementary behavior models to detect relevant mission events. When a relevant 
mission event is detected, a synthesized behavior model automatically changes the behavior of 
vehicles involved in the corresponding reactive play by calling the necessary route planning or 
inter-vehicle coordination tasks in UxAS. 
 
4.3.4.4 Toward V&V of Autonomy 
 

Many traditional approaches for verifying system safety involve identifying system hazards that 
could result in an operational environment and ensuring they have been sufficiently mitigated, 
e.g. as in fault tree analysis. Reactive synthesis provides an elegant method for mitigating 
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identified hazards at the level of autonomous reasoning, as demonstrated by reactive plays that 
respond to events in the environment, including certain types of faults. This is only one example 
of ways in which reactive synthesis and other formal methods-based approaches can supplement 
existing verification approaches for V&V of autonomy. The use of formal methods also enables 
the use of automated verification tools that can, e.g., verify that components with formal 
specifications on their behavior will interact correctly in a larger “system-of-systems.” Given the 
complexity of autonomous systems, such automated approaches will be necessary to keep 
verification tractable. 
 
4.3.5 Lessons Learned and Next Steps 
 

There are many approaches for implementing autonomy. In a program like IMPACT, where 
several groups with different approaches come together to solve a concrete problem, it takes time 
to learn the strengths and weaknesses of each approach and determine which approaches are best 
suited to different aspects of the problem. To remain productive, some teams may have to shift 
away from their planned focus. Here, this team had to shift focus because the intelligent agent 
and UxAS were able to better provide many of the originally planned capabilities.  

In the end, we were able to find a better fit for our approach, which in turn has given us 
ideas for future research. For instance, while our synthesis approach produces control protocols 
that are “correct-by-construction,” they must be translated into some implementation framework 
in order to actually execute. Full verification would then require verification of both the 
implementation framework and the translation processes, and methods to efficiently perform 
verification in such a situation are still needed. Another challenge is in debugging specifications 
for reactive synthesis, i.e. checking that specifications are realizable and that they capture the 
designer’s intent. This is much more challenging than debugging traditional system 
specifications, since reactive synthesis specifications involve both the system and its 
environment. Both of these areas would be interesting next steps for future research.  
 
4.4 Machine Learning of Autonomous Vehicle Tactics through Human Evaluation 
 

4.4.1 Motivation and Challenges 
 

IMPACT as a whole is focused on tools and autonomy to aid a human supervisor in managing 
large teams of autonomous vehicles. Autonomy was designed to help the supervisor resource 
their plays, and to plan the routes for the vehicles. The underlying autonomy of the vehicles is 
assumed to be robust and efficient. This assumption however, is in doubt as we move towards a 
future where swarms, and dynamic environments require the use of machine learning techniques 
to develop the underlying autonomy of the vehicles. As the number of vehicles grows the 
workload on an individual operator will become ever more burdensome. To alleviate this, more 
robust autonomy needs to be developed, especially in the case of large numbers of drones acting 
in concert, such as a swarm. Often pure machine learning techniques can produce efficient 
behaviors, but those behaviors might seem foreign to the supervisors who must make the 
decision on whether to allow the vehicles to continue to operate. This research sought to examine 
the effect of Interactive Machine Learning on the trust of a supervisor by creating team behaviors 
that are more recognizable to a human operator.   

The importance of understanding what algorithms are capable of doing is obvious when 
you are co-located with a potentially dangerous device. Thus for human-robot interaction, 
physical proximity creates a demand for high trust between the humans and the machines 
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(Groom & Nass, 2007; Lee & Nass, 2010; Nass, Fogg, & Moon, 1996). Less intuitively, trust in 
unmanned systems and autonomy is still needed when these systems are operated from a distance 
through command abstractions, such as supervisory control. Moreover, supervisory control is 
precisely where machine-learning algorithms should be leveraged in helping to determine the 
best mixtures of tasks, vehicles, and operator performance for mission success. 

If implemented, machine learning will be difficult to supervise (Sheridan & Parasuraman, 
2005), and calibrated trust will be nearly impossible to achieve as it relies critically on 
understanding the intentions and behaviors of the system (transparency – see (Sanders, Wixon, 
Schafer, Chen & Hancock, 2014)). Trust in automation is a complex research area, well 
summarized across several reviews (Lee & See, 2004; Sanders, Oleson, Billings, Chen & 
Hancock, 2011). Lee and See (Sanders, Oleson, Billings, Chen & Hancock, 2011) outlined three 
general bases for development of trust for automation in humans: performance of the automation 
(does it fail unexpectedly), process (whether the automation is understandable and fits well into 
the users workflow), and purpose (the automation functions as intended). Though purpose, 
process and performance can form the basis for trust, trust is still different from reliance (the 
choice to use the agent or automation.) For example, one can choose not to use a robot to 
perform a task, even though it could be very trustworthy; or vice versa, distrust a system but 
have no choice but to rely on it under certain circumstances, such as cognitive overload 
(Wickens, Hollands, Banbury & Parasuraman, 2013).  

Often humans must rely on their perception of an automated system or robot’s ability and 
behavior. The more obvious these abilities and behavioral intentions are, the more obvious 
failure states become. It is not that a system has to be perfect in order to be trusted, but it must be 
somewhat predictable; trust is more calibrated if one can “trust” automation to make certain 
kinds of mistakes (e.g. (Freedy, Devisser, Weltman & Coeyman, 2007)) but not others.  
With an opaque system, the operator cannot compensate for these faults (risking mission 
performance), in part because the expectancies surrounding failure conditions are not obvious. 
Calibrated and high-resolution trust is less likely because automation mistakes are not 
observable. Many have suggested increasing automation transparency is needed to improve 
teaming here; but the tradeoff with transparency in this case is that opaque systems may provide 
more optimal solutions. Neuroevolutionary computation (Gauci &Stanley, 2007; Stanley, 
D’Ambrosio & Gauci, 2009; Stanley & Miikkaulainen, 2002)) is one such method; the serious 
downside to neuroevolutionary computation is that it can result in “black boxes” from the human 
operator’s point of view, which can make its application unsuitable for the real world. When 
applied to robotic plans, it may have the user asking questions like “What is this robot doing? 
What is it going to do? Why did it do that?”  

The focus on increasing the optimality of these systems, largely performed in the 
domains of computer science and mathematics, generally ignores the need for user interaction. 
We attempt to mitigate the notable downside of generating black box solutions with new 
methods, as explained below, seeking to make their behavior more tolerable to the human 
supervisors who might oversee their operation. 
 
4.4.2 Development and Implementation 
 

4.4.2.1 Interactive Machine Learning (IML) 
 

To improve the comprehension between the user and the evolved team behaviors we 
implemented an interactive evolutionary system. This system develops underlying team tactics 
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that can be incorporated into plays by evolving neural network controllers for teams of vehicles. 
This neuroevolutionary approach allows for the creation of team behaviors that scale with the 
size of the team, while maintaining team symmetries and dynamics. The interactivity of the 
training process is accomplished by intermixing human choices into the evolutionary process 
periodically throughout the team’s training. Our central hypothesis is that Interactive Machine 
Learning (IML) will develop behaviors (plans in this experiment) that adhere more closely to 
user goals and expectations. Plans should be more identifiable and trustworthy as a result. We 
focused on three questions: (1) does the incorporation of humans in deriving ML algorithms, 
through IML, lead to more human trust in the plans that are generated? (2) Do participants, who 
helped generate plans, recognize, and are they able to differentiate between IML and black box 
plans (which used neuroevolution, but no human involvement). Finally, (3) does the amount of 
neuroevolution that occurs, represented as steps, affect either trust or plan recognition? 

To test this, we developed a simple 2-d kinematic simulator that allows a human subject 
to interactively train a small team of robots in the process of maintaining coverage over target 
areas. A research protocol was then developed, detailed below, that focused on addressing the 
three questions.  
 
4.4.2.2 Experiment  
 

Sixty participants (between the ages of 18 and 40) recruited from the University of Central 
Florida performed in the experiment. They received payment ($15/hr.) as compensation, in 
compliance with all Institutional Review Board statutes. The study lasted approximately 2 hours. 
Participants completed a trust in automation pre-experiment survey (Jian, Bisantz, Drury & 
Llinas, 2000); then they performed in three phases of experimentation: training, comparison, and 
labeling.  

Training Phase: Participants were taught about the goal of 3 robots trying to search two 
areas effectively, and that the human role was to help train automated behaviors to maximize the 
amount of the area searched. A set of robot search agents in a virtual environment were shown 
exploring a space (Figure 26). Agents were autonomous and left signal decay trails in their wake, 
allowing participants to view how much of the targeted area had been searched.  
 

 
 

Figure 26: Learning Phase: Multiple Teams in Action were Shown. A single choice was made. 



 

62 
DISTRIBUTION STATEMENT A:  Approved for public release.                                             Cleared, 88PA, Case# 2018-0820. 

 
Participants responded by choosing from these options a good behavior to evolve further. 
Participants were counter-balanced across the frequency of user input to be provided in IML (a 
decision, as in Figure 26, every 10 or every 25 steps of evolution). With fewer steps of evolution, 
the human has more “say” in the outcome. After making their selection, the algorithm evolved, 
and then new “plans” were presented as the next stages in evolution. Each plan had a fitness 
score associated with the algorithm, thus we were able to compare IML plans against black box 
plans. Participants responded through approximately 410 steps of evolution due to time 
constraints (about 40 points of interaction for 10-step, and only about 16 points of interaction for 
25-step). 
 
Comparison Phase: After training, participants were shown two teams in action. One of the two 
teams was IML and the other was black box, with the location of each team on the screen 
randomized (left or right). Plan pairs were chosen on the backend to equate fitness between 
them. When plans stopped participants selected the plan they believed would best cover the 
designated areas, and then made a response, 1-100, on a sliding trust scale indicating 1 for no 
trust and 100 for complete trust in the team plan they had chosen. 
 
Labeling Phase: Following comparison, participants were shown a single team in action, and 
asked whether the team was IML, or black box. The interactive evolution teams were drawn 
from the specific individual’s set of IML plans. Approximately 50% of each type of plan was 
shown randomly over 80 trials. Participants were given immediate feedback on their answers. At 
the end of the phase, participants were asked for their decision criteria for determining whether 
the teams in action had human IML, or were the evolved plans. Responses to the last question 
ended the experiment. Following, participants were debriefed and thanked for their participation.  
 
Initial Results: Overall, participants chose the IML plans 66% of the time over the purely 
evolved plans in the head to head comparison. The IML and evolved plans had similar fitness so 
the user’s choices must be based on characteristics imparted during the IML training phase. 
During the labeling phase, the participants are able to correctly label the plans as IML or 
Evolved 77% of the time. This suggests that there is something imparted from the interactive 
training that users are able to recognize.  
 
4.4.3 Capabilities Developed 
 

In the future where swarms, and dynamic environments will require the use of machine learning 
techniques to develop the underlying autonomy of the vehicles especially as the workload on an 
individual operator will become ever more burdensome. A system was built to meet this goal by 
the observation of machine evolved swarm actions and those that involved interactive machine 
learning where human feedback was injected into the generational cycles of evolutionary 
computation. It was shown via human subject testing that pure machine learning techniques can 
produce efficient behaviors, but those behaviors do seem foreign to human supervisors by a 
factor or two-thirds to three quarters of the time. This research illustrated the effect of IML on 
the trust of a supervisor by noting that human subjects more often selected IML over evolved 
results. 

The hypothesis is weighted more heavily towards supervisory control with interaction by 
the human input into machine-learning algorithms in terms that should support the leveraging of 
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the best mixtures of tasks, vehicles, and operator performance for mission success. The 
interactive evolutionary system via human subject testing results supports the intended notion 
that our hypothesis tends to develop behaviors (plans in this experiment) that adhere more 
closely to user goals and expectations. Plans should be more identifiable and trustworthy as a 
result.  
 
4.4.4 Lessons Learned and Next Steps 
 

Involving humans in generating neuroevolutionary behaviors for teams of agents (IML) resulted 
in behaviors that participants chose more often, and could be recognized. The importance of this 
first step is key, as it suggests that IML imparts traits to ML behaviors, which could be tuned to 
increase the expectancy and alignment of teams of machines. As mentioned in the introduction, 
this is a key limitation to employment. Despite their preferences, participants trusted IML plans 
slightly less than black-box plans, despite generally good trust of plans (M= 61).  

From a methodological standpoint, the IML methods appears to have been effective even 
with small amounts of user involvement. Users may be imparting traits, correcting early, 
common “odd” behaviors of the algorithms, or possibly, it was their active involvement in the 
behavior development that made it familiar to them. No matter the explanation our work shows a 
hopeful avenue for exploration toward making otherwise opaque algorithms useful, and creating 
expectancies or familiarity for the user. 

Although machine learning offers required advantages, it can be opaque to users and 
reduce their awareness, confounding C2. We have shown there is promise in interactive machine 
learning techniques that increase user selection of team behaviors compared to pure evolution 
alone. 
 
4.5 Machine Learning for Task Generation Capability 
 

4.5.1 Motivation and Challenges 
 

The C2 of unmanned vehicles is a cognitively intensive task for human operators. The efficiency 
and success of the operator’s performance often depends on a multitude of parameters, such as 
training, human abilities, timing and situational awareness. Humans are required to multitask in 
an uncertain environment, process situational data, and be able to efficiently utilize autonomous 
agents in multiple regions of interest. To improve operator’s performance in complex C2 
operations within the IMPACT environment, a machine learning model was developed that 
addresses these challenges. 

This is accomplished by reviewing of incoming data from sensor feeds, chat messages 
and environmental events to find a “common denominator” for both the human and the 
autonomous agents. They all operate in the space-time domain; thus, it is important to know 
time, location, duration and the assets involved in the tasking of the autonomous agent or person. 
The data were compiled to a “human-agent interaction” (HAI) database as illustrated in Figure 
27. In addition the modeling included a conversion of deterministic variables into a set of “soft” 
human based descriptors where the ranges are defined by the user. The tasking is then machine 
and put into a model to be used as inference rules. 
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Figure 27: Machine Learning Model for Task Generation 
 

The motivation for this model is to (1) optimize information in the time and space domain, (2) 
provide understanding to a human and autonomous agent, (3) make the process transparent to the 
human, and (4) improve the IMPACT system capabilities. 
 
4.5.2 Software and Hardware Acquisitions 
 

This research leveraged the IMPACT system and utilized the existing simulations. MATLAB, a 
software tool for technical computing with regards to algorithm development, modeling, 
simulation and prototyping was utilized. Two toolbox modules within the MATLAB, Machine 
Learning and Neuro-Fuzzy, were utilized in performing the machine learning aspects for the 
project.  
 
4.5.3 Development and Implementation 
 

Data from IMPACT simulations were utilized in the process and parsed to provide the tasking 
information as illustrated in Figure 27. Keywords from this and chat messages data are clustered 
as shown in Table 3. This approach measures effectiveness during the machine learning phase of 
the project as it makes sense of this data. 

The model collects data from 4 inputs: sensor feeds, chat message feeds and events feeds 
as inputs and uses “tasking type” as an output. The data has previously been optimized for the 
time-space domain. A subsample of rules, IF-THEN rules, models the behavior environment in 
MATLAB in order to set the dynamics for the training method. The rules all have been modeled 
by a user to show possibility of optimization and machine learning capability for this approach. 
Once IMPACT simulations have expanded data seeds and the scope within and above 
simulations effort, and more data is provided, it will be possible to re-train the model and 
validate this approach for accuracy, consistency and computational power. 
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The developed model allows the use of either a “soft” linguistic term or deterministic 
data. This allows for a “neuro” part used to train the model on deterministic data, and the “fuzzy” 
use of soft-linguistic terms (Petrosyuk, 2016). 
 
4.5.3.1 Foreseen/ Unforeseen Challenges 
 

A few challenges due to missing and repetitive data sets that were encountered which included 
ill-defined or missing start and end points. 

A separate issue arises from the question: how can we process and extract meaningful 
information form natural (chat) language data? This will most likely require development of a 
consistent method for processing chat messages. Experimentation with clustering algorithms and 
data feeds may provide information on statistics tasks metrics. These metrics are important in 
getting a clear understanding of how inference rules are cleared and can be investigated 
separately. 
 
4.5.3.2 Capability Technical Approach 
 

We have attempted to create a machine learning model based on the operator, handing of 
deterministic data from the sensors, the environment and the decision–making process of the 
IMPACT user. 

All data in the IMPACT simulation are stored in states, which store the live data for all of 
the vehicles in the simulation. Other data comes from the sensors of the Unmanned Vehicles 
(UxVs). These data are stored as camera images, video streams, and radio state variables. Each 
vehicle state is comprised of many variables such as: current location, velocity, acceleration, 
current heading, available energy, energy usage rate, list of payloads, and current tasks. These 
data were used by machine learning techniques to determine what IMPACT based “play” should 
be generated. 

The initial machine learning approach taken is the K-Nearest Neighbor algorithm (Fix et al., 
1951) based on its simplicity and applicability to many problems. The high level approach is 
comprised of three steps: 

1. Record the states of the IMPACT simulation when a task is created. 
2. Continuously monitor the IMPACT simulation states. 
3. If the current simulation state matches a state previously recorded when a task was made, 

then generate this task for the user of the Task Manager. 
 

4.5.3.2.1 Task Optimization 
 

The complexities of the IMPACT system can result in human operator information overload. The 
model used monitors queuing of tasks in IMPACT with the aim of reducing the operator’s 
cognitive load. 
 
4.5.3.2.2 Data Collection 
 

All vehicle raw data collection from the IMPACT system yields two types of data: user 
generated chat messages and sensor data which can be broken into four elements: time of 
message, location, duration and asset. Thus the data represented the time stamp when the 
message was issued, the region of interest (ROI) where an asset is planned to appear, the 
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duration of completion after the trigger initiation and asset with sensor that can complete the 
task.  
 
4.5.3.2.3 Complexity in IMPACT 
 

For the user who simultaneously controls a number of autonomous agents, complexity means 
higher rates of multitasking. In this case, complexity reduction happens when many simpler 
tasking states are grouped together in a relevant sequence with proper timing. 
 
4.5.3.2.4 Environmental Events 
 

Environmental events take place outside of the user’s control. These events trigger a user’s 
reaction which will require actions in the IMPACT system to respond to the environmental 
events. Example environmental events include: a gate runner, mortar fire, and a user’s 
observation of a chat message.  
 
4.5.3.2.5 Sensor Data 
 

Some of the variables in the IMPACT system include data that is supplied by a sensor from the 
unmanned vehicles (UxV). UxV’s operate in a time and space domain and carry variable sensor 
performance characteristics (airspeed, energy rate, altitude, latitude/longitude coordinates, etc.).  
 
4.5.3.2.6 Proposed Optimization Model for Machine Learning 
 

Common attributes of the data presented in the summary above are space and time. Both the 
sensors and the IMPACT operators see information in the space and time domain. All events and 
tasks occur at a specific ROI and a point in time. The data-task optimization problem of the 
IMPACT system can thus be stated as follows: What is the least complex sequence of tasks that 
needs to take place to satisfy success of the outcome within a specified completion time? 
Three main variations of complexity settings designated as high, medium and low were utilized 
to categorize complexity. In the occurrence of a single event, the set of rules is straightforward 
but in the occurrence of simultaneous events the situation becomes rather complex. This led to 
being able to properly control and evaluate states under different complexities as a minimization-
maximization problem. This led to an optimized tasking table in order to observe behavior of the 
separate UxVs and their task load in the time and space domain. Clustering the sensor and chat 
message status is the first step that can be taken towards reducing the operational complexity for 
the user and to investigate if such data can be used to model the control system under different 
complexity levels. 
 
4.5.4 Lessons Learned and Next Steps 
 

An optimization approach has been developed that would allow the IMPACT system to perform 
tasking under different levels of complexity. The level of complexity was shown to depend on 
the number of users using the IMPACT system, the number of random events happening during 
scenario and frequency of such events. All of these factors contribute to operator overload. 
Minimization of complexity can be achieved by optimizing the IMPACT input- output space in 
the time and space domain. 
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5 TECHNICAL EVALUATIONS  
 

5.1 Spiral 1 Evaluation 
 

This section will briefly describe IMPACT’s Spiral 1 evaluation that was designed to solicit 
feedback from UxV operators and base defense subject matter experts on the Spiral 1 IMPACT 
system (for a more in-depth treatment see Behymer, Rothwell, Ruff, Patzek, Calhoun, Draper, 
Douglass, Kingston, & Lange, 2017). For this evaluation, participants were trained on 
IMPACT’s autonomous technologies and asked to manage six UxVs (three UAVs, two UGVs, 
and one USV) in support of a simulated base defense mission. Feedback was sought on the HMI 
candidate display formats, symbology, and input modalities (mouse, touchscreen, and speech 
recognition) as well as UxAS, IA, and autonomics framework. Subjective data were recorded via 
questionnaires and analyzed and additional data were collected on the modality participants used 
to call plays. The results of this evaluation informed the development of the Spiral 2 IMPACT 
system. 
 
5.1.1 Method 
 

5.1.1.1 Participants 
 

Seven current or former United States Airmen participated in the study. Three participants had 
UxV operational experience (Predator, ScanEagle, Global Hawk, and Shadow) and four had 
experience in conducting base defense operations in deployed environments (Afghanistan, 
Germany, Iraq, Kuwait, and Saudi Arabia). All participants were male and reported normal or 
corrected-to-normal vision, normal color vision, and normal hearing.  
 
5.1.1.2 Equipment.  
 

The Spiral 1 IMPACT test bed consisted of six computers (a Dell T5610 & five Dell R7610s 
running Microsoft Windows 8.1). One computer ran IMPACT and the AMASE (AVTAS: 
Aerospace Vehicle Technology Assessment and Simulation - Multi-Agent Simulation 
Environment) vehicle simulation (used to simulate the UxVs). One computer ran the TOC and 
simulation for simulated entities in the sensor videos (Vigilant Spirit Simulation; Feitshans & 
Davis, 2011), three computers ran two simulated (SubrScene) sensor videos, and one computer 
ran an XMPP Chat server for simulated communications. The IMPACT test bed used four 27” 
touchscreen monitors (Acer T272HUL), a headset with a boom microphone (Plantronics 
GameCom Commander), a foot-pedal (for push-to-talk speech control), and a mouse and 
keyboard.  

An overview of the IMPACT test bed used for the Spiral 1 evaluation is shown in Figure 
28. Starting with the top screen and moving clockwise, the Tactical Situation Display provided a 
geo-referenced map with UxV locations as well as UxV-specific information (e.g., a UxV’s 
current play, error indicators, a UxV’s planned route, etc.). The Payload Management display 
showed available sensor feeds on demand. The Sandbox display was a workspace for the 
participant to call and edit plays without obscuring the current state of the world (which was 
always available in the Tactical Situation Display). Finally, the System Tools display contained 
chat windows as well as help documentation (e.g., list of voice commands). 
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Figure 28: IMPACT’s Test Bed Interface 
 
5.1.1.3 Procedure.  
 

After completing a background questionnaire, participants were given an overview of IMPACT 
that described the project’s goals and introduced the concept of play calling. Next, participants 
were seated at the IMPACT test bed and given an overview of their mission that included: 

• A description of the UxVs they would be controlling, how each UxV, its route, and its 
sensor footprint were represented on the map, and the tasks that each UxV was 
responsible for performing in support of base defense operations. 

• An overview of the base they would be defending including the base’s perimeter, sectors, 
critical facilities, patrol zones, and the named areas of interests in the area immediately 
surrounding the base.  

• An overview of their role as a multi-UxV operator supporting base defense operations 
that described that they would be assigning high-level tasks to the UxVs while the 
autonomous system components flew, drove, and operated the UxVs. Also, that they 
would be assigned tasks from their commander in a chat window and that they would 
have access to the UxV sensor feeds but it was not their responsibility to monitor them. 

 
After the general overview of the IMPACT simulation, mission-related tasks, and input 

modalities available for play calling, participants received a detailed briefing on the play-related 
interfaces available in Spiral 1. Next, training focused on providing participants with experience 
with each input modality. Participants received 12 chat messages asking them to call a play using 
a specific modality (e.g., “Using speech, call an air surveillance at Point Alpha”; 4 plays for each 
modality).  

Participants were then trained on how to specify constraints, vehicles, and details when 
calling and/or editing a play. For all three input modalities, Participants were instructed via chat 
messages to call a specific play (e.g., “Using speech, call an air surveillance on Point Alpha, set 
sensor to EO, and optimize for low impact”), then make edits to the ongoing play (e.g., “Change 
the loiter type to a figure 8”). If a participant made a mistake, the experimenter provided 
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feedback and the participant tried again until he had successfully completed the correct action. 
On average, training lasted one hour and was followed by a short break before the experimental 
scenario. 

The goal of the 20-minute experimental scenario was to provide participants with the 
opportunity to exercise all of IMPACT’s capabilities within a realistic base defense scenario. 
Participants were informed that the scenario would begin with an UAV investigating a 
suspicious watercraft with all other UxVs on a high alert patrol. Table 3 lists the exact sequence 
of mission events that occurred. Participants were instructed to respond to each chat message by 
calling one or more plays that best addressed the event. Participants were free to choose which of 
the three input modalities to employ in completing each step of the play calling process.  

Once the experimental scenario was completed (approximately five plays called), 
participants completed paper questionnaires on the overall IMPACT system and its components. 
Then a semi-structured interview was conducted to capture additional feedback on IMPACT and 
its associated technologies including the three different input modalities. The entire procedure 
lasted approximately 3.25 hours.  
 

Table 3: Sequence of Mission Events. 
Event Description 

1 Participant receives chat message from Sensor Operator that unidentified watercraft 
is a fishing boat. 

2 Participant receives a chat message from Commander to resume normal base defense 
operations. 

3 
Intelligent Agent recognizes a serendipitous surveillance opportunity (a UAV is near 
a critical facility) and recommends a play (air surveillance at the critical facility) to 
participant. 

4 
Participant receives chat message from Commander to send a UAV to Point Charlie 
and to instruct other UxVs to go highly mobile in response to a patrol reporting 
smoke at Point Charlie. 

5 Participant receives chat message from Sensor Operator to send UGV to Point 
Charlie for “eyes-on”. 

6 Participant receives chat message from Commander to provide UGV headed to Point 
Charlie with a UAV over watch. 

 
5.1.2 Results 
 

Of the seven individuals who participated in the study, six completed the training and mission in 
the allotted time. Due to unanticipated time restrictions, the seventh participant was unable to 
complete the study and was eliminated from the data analysis. Due to the small number of 
participants, UxV operators and Security Force personnel data were not analyzed separately.  
 
5.1.2.1 Overall System.  
 

Participants used a 5-point Likert scale (ranging from 1: No Aid to 5: Great Aid) to rate 
IMPACT’s potential value for future UxV operations as well as the ability of IMPACT to aid 
operator workload and SA (see Figure 29; note that the vertical line is the scale’s midpoint, so all 
ratings to the right are above a 3). Participant responses indicated that they had a positive opinion 
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on the potential value of IMPACT for future UxV operations, to aid workload, and to aid SA, 
with no ratings less than a 4.  
 

 
 

Figure 29: Participant Ratings for IMPACT’s Ability to Aid SA, Workload, and Potential Value  
(Every participant rated IMPACT at a 4 or higher for each of the three measures. The numbers 
inside the bars indicate the number of participants who provided a rating at that scale value.) 

 
The overall usability of IMPACT was assessed using the SUS (Brooke, 1996). The SUS asks 
participants to evaluate 10 items related to system usability using a 5 point Likert scale ranging 
from Strongly Agree to Strongly Disagree (see Figure 31), and these 10 items contribute to an 
overall SUS score. Overall mean SUS score for IMPACT was 73.75, placing it in the 70th 
percentile of SUS scores.  
 

 
Figure 30: System Usability Scale Results (Error Bars = Standard Errors of the Means) 

 
Participants were also asked what they most liked, what they least liked, what was most 
confusing, and what they would improve in regards to the overall IMPACT system (see Table 4).  
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Table 4: Participant Comments on the Overall System. 

 
Most Liked Least Liked Most Confusing Improvements 

• Multiple modalities 
(e.g., speech, touch, 
keyboard and mouse) 

• Agent recommending 
plays when a UxV is 
near a critical facility 

• Play Creation tile’s 
intuitive symbology 

• Ability to maintain big 
picture on top screen 
while zooming in and 
planning on bottom 
screen (sandbox)  

• Touch screen 
wasn’t precise 
enough; difficult to 
select correct 
button 

• Cannot manually 
draw routes for 
UxVs 

• Displaying all UxV 
routes made map 
cluttered 

• Requiring 
confirmation to 
execute a play 

• Difficult to 
determine 
where a 
specific UxV 
was going due 
to map clutter  

• Challenge to 
learn how play 
icons were 
organized in 
Play Creator 
tile  

• Ability to call plays by 
clicking locations/ 
vehicles on map 

• A single ear headset 
would be more 
comfortable and help 
maintain SA 

• Expand voice 
commands to more 
than play calling 

• Forecasting 
capabilities (e.g., what 
are things going to be 
like in 10 min.) 

 
In addition to rating the overall IMPACT system, participants were asked to rate four 

system components (Play Calling, Autonomy, Feedback, and Test Bed) on five parameters 
(Potential Value, Ease of Use, Integration, Consistency, and Ease of Learning) and provide any 
comments they had about each component. Overall, 88% of ratings were either a 4 or 5 (the top 
two categories) and only a single component (Ease of Learning) was rated less than a 3 (by a 
single participant).  
 
5.1.2.2 Play Calling Modality.  
 

The feedback on touch and speech was mixed; in general, participants seemed to like the idea of 
being able to execute plays via touch and speech. However, participants expressed concerns 
about the touchscreen’s calibration and lack of precision (a participant might touch an icon three 
times before the system registered it) and the speech system’s poor accuracy (the word error rate 
was 21.95%). Objective data was also collected on the modality (mouse, touch, or speech) that 
participants used to call plays during the mission (when participants could choose the modality). 
Though several participants had positive comments about speech and touch, participants tended 
to use the mouse more than touch or speech (see Figure 32 – note that speech is labeled 
speech/mouse because when participants used speech during the mission they always used it in 
conjunction with the mouse. For example, a participant would initiate a play call with a speech 
command but execute the play by clicking the checkmark with the mouse instead of saying 
“Confirm” to execute the play by speech command). In fact, only one participant tried to use the 
touchscreen to call plays during the mission and only two participants tried to use speech. 
Participants also made a higher percentage of major errors (defined as failing to complete a play 
correctly) when using touch than mouse or speech.  
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Figure 31: Number of Plays Attempted & Number of Errors by Modality 
 

Participants were also faster at completing plays using the mouse as compared to using 
touch or speech (see Figure 33a). However, this difference most likely reflected the specific 
problems participants had with the touch (not precise enough) and speech (not accurate enough). 
In fact, when only correctly completed plays (i.e., no major errors) were examined the difference 
between time to complete a play with the mouse and speech was only 2.5 seconds (see Figure 
33b – note that participants never correctly completed a play using touch).  
    

                                            
(a)                                                     (b) 

 
Figure 32: Mean Time to Complete Play Call by Modality 

a) all plays  b) plays called correctly  (Error bars = standard deviations) 
 

5.1.3 Discussion 
 

This evaluation examined the usability of the IMPACT Spiral 1 system. Even though the Spiral 1 
feature set was a subset of the Spiral 2 IMPACT system, five out of six participants strongly 
agreed that IMPACT has the potential to be a great aid in future UxV operations. Additionally, 
all participants agreed that IMPACT has the potential to improve operator SA and reduce 
operator workload. Participants rated both the overall IMPACT system and system 
subcomponents including play calling, autonomy, feedback, and testbed positively.  

This study also examined the modality that participants used when calling plays. 
Participants overwhelmingly used the mouse compared to the touchscreen or speech recognition, 
and were faster and more accurate with the mouse. Several factors may have contributed to these 
results. Multiple participants had difficulties with the touchscreen registering their inputs. For 
example, it would often take a participant multiple attempts of touching a play icon before the 
system responded. In fact, some participants suggested in their comments that if the touchscreen 
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had worked better, they would have been more likely to use it. Several participants spoke 
favorably of speech in their comments, especially the security force personnel, who mentioned 
that the speech commands were very similar to the dispatch calls they make during security force 
operations. However, this preference was not reflected in performance, as participants used the 
mouse/keyboard to call plays more than the speech. Several participants commented that they 
weren’t completely familiar with the speech vocabulary, suggesting that training may not have 
been sufficient. In the end, participants may have chosen to use mouse/keyboard due to its 
reliability; clicking a play icon with the mouse consistently resulted in the desired action, while 
touching a play icon or issuing a voice command often failed to support task completion.     
The biggest limitation of this study was the lack of objective measures; though participants 
provided positive subjective feedback in regards to IMPACT, the extent to which IMPACT 
improves participant performance was not ascertained in the Spiral 1 evaluation. The mission 
duration was also short, limiting the opportunity to investigate the degree to which participants 
could seamlessly transition between plays. Additional limitations included the small number of 
participants and the length of time (only ~3.25 hours) participants were exposed to IMPACT. 
Participants with greater experience with IMPACT may have been more comfortable using the 
touchscreen and/or speech recognition.  

Participant feedback informed and improved IMPACT’s Spiral 2 development. For 
example, participants expressed a desire to directly manipulate UxVs and call plays from the 
map, features that were implemented in Spiral 2. Participant feedback also generated research 
questions that led to additional empirical studies. For example, several participants felt the Play 
Creator tile could be improved by organizing play icons by vehicle type rather than by play type. 
A study was conducted examining the effects of icon organization and the results supported 
participant opinions; icons organized by vehicle type may improve a participant’s ability to 
locate the correct icon (Mersch, Behymer, Calhoun, Ruff, & Dewey, 2016). Additionally, 
improvements were made to IMPACT’s input modalities. For touch, the diameter of the play 
icon’s selectable area was increased slightly (7.94 mm diameter compared to 6.35 mm in Spiral 
1) and the touchscreen was replaced with a slightly larger one positioned at a lower tilt angle. For 
the speech modality, the finite grammar was dramatically expanded to allow hundreds more 
ways to say things, resulting in a large increase in flexibility and naturalness. Commands were 
also added to support a more complex mission (i.e., more UxVs, larger variety of play types, and 
ability to specify play details with speech). 
 
5.2 Spiral 2 Evaluation 
 

This section will briefly describe IMPACT’s Spiral 2 evaluation (for a more in-depth treatment 
see Draper et al., 2017). Participants managed twelve simulated UxVs to support base defense 
operations. In order to demonstrate the effectiveness of IMPACT’s autonomous system 
capabilities, this research compared IMPACT to a Baseline condition that represented the current 
state-of-the-art at the beginning of the IMPACT project. The Baseline condition had a subset of 
IMPACT’s capabilities including the UxAS to assist in route planning and a HMI to interact with 
the UxAS. However, the Baseline condition lacked intelligent agents to support vehicle 
recommendations, the autonomics framework for plan monitoring, the task manager, and the 
voice recognition system. Operator performance and overall mission effectiveness were 
hypothesized to be significantly improved with IMPACT as compared to Baseline. Additionally, 
participants were hypothesized to prefer IMPACT over Baseline.  
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This research was also designed to investigate the extent to which IMPACT aids 
performance as the complexity of the mission increases. To this end, two levels of complexity 
were examined in the experiment, a low complexity mission and a high complexity mission. 
Operator performance was hypothesized to be worse in the high complexity missions as 
compared to low complexity, but the performance decrement was hypothesized to be less with 
IMPACT than with Baseline.   
 
5.2.1 Method 
 

5.2.1.1 Participants.  
 

Eight volunteers with relevant military experience participated in this study, four active duty and 
four who had previously served. Six participants had prior experience piloting UAVs (Global 
Hawk, Predator, Reaper, Scan Eagle, Raven), one participant was a former Predator/Reaper SO, 
and one participant was an experienced security force and base defense expert. Seven 
participants were male (one female) and all participants reported normal or corrected-to-normal 
vision, normal color vision, and normal hearing. The average age of participants was 43.6 years 
(SD = 10.84).  
 
5.2.1.2 Design.  
 

A 2 X 2 within-participants design was used, with each participant experiencing both Baseline 
and IMPACT at two different levels of task complexity. The order of conditions was 
counterbalanced by tool and task complexity. In the Baseline condition participants had access to 
the UxAS and a HMI to work with the UxAS. The IMPACT condition had these features as well 
as an intelligent agent to support plan recommendations, plan monitoring, task manager, voice 
commands, and associated HMIs (Table 5). 
 

Table 5. Differences Between IMPACT and Baseline. 

Tool Human 
Operator HMI UxAS IAs Monitoring Task 

Manager Voice 

Baseline X Subset of 
IMPACT     

IMPACT X X X X X X X 
 

Task complexity was varied by a combination of increasing the number and complexity of 
RAMs the participant needed to complete during the shift, increasing the number of commander 
queries the participant needed to respond to, increasing the amount of noise radio and chat 
chatter (i.e., messages that didn’t require participant action), and increasing the number of events 
(normal base defense, intruder, environment, UxV faults) the participant encountered.  
 
5.2.1.3 Equipment.  
 

The experimental configuration used in this study consisted of four stations, the C2 Operator 
Station, the Sensor Operator Station, the TOC, and the Simulation Station (see Figure 34). The 
Simulation Station used a Dell Precision T5400 running Microsoft Windows 7 and OneSAF, a 
simulation tool that generated all friendly, neutral, unknown, and hostile forces during the 
experiment, with the exception of the UxVs. The C2 Operator Station and TOC each used a Dell 
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Precision T7910 while the Sensor Operator Station used a Dell Precision T5600; all three ran 
Microsoft Windows 8.1. The C2 Operator Station, Sensor Operator Station, and TOC had 
identical monitor setups, with one Sharp PN-K322B 4K Ultra-HD LCD Touchscreen (3840 x 
2160 resolution) and three Acer T272HUL LED Touchscreen (2560 X 1440). Three Dell 
Precision R7610 running Microsoft Windows 7 located in a different room provided the sensor 
feeds for the UxVs (four feeds per machine). SubrScene, an in-house simulation visualization 
toolkit was used to provide the sensor feeds.  
 

  
 

Figure 33. Experimental Configuration 
 

5.2.1.4 Scenario.  
 

During the mission participants were placed in the role of an operator managing twelve UxVs 
(four UAVs, four UGVs, and four USVs) to support base defense operations. The participant’s 
job was to use the UxVs to accomplish tasks in response to requests by his or her commander 
which were generated from the TOC via pre-scripted chat messages. The participant had access 
to the UxV sensor feeds but it was not his or her responsibility to monitor them; that role was 
performed by the Sensor Operator, who was played by one of the members of the experimental 
team. The participant’s main task was directing and monitoring the UxVs in response to various 
events. For each event participants had a quick reaction checklist available in the Help file that 
listed the correct response for that event. Events that could occur included patrols, RAMs, 
normal base defense events (e.g., responding to alarms, investigating suspicious vehicles), and 
intruder events (e.g., gate runner, mortar fire). In addition to these events, participants also had to 
respond to queries from their Commander via chat. Example queries include: What’s FN-42’s 
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Altitude? How long would it take to get a Show of Force at Gate 3 in place? How many RAMs 
have been completed? Participants also had to respond to vehicle failures (e.g., sensor 
malfunctions, engine failures) and environmental events (e.g., restricted operating zones, dense 
smoke). 

Four experimental scenarios were used, two low complexity scenarios and two high 
complexity scenarios. Each type (low and high) were matched, so that if an event occurred in the 
first low complexity scenario (Scenario A), an equivalent event happened in the second low 
complexity scenario (Scenario B) at the same time. For example, at seven minutes into the 
mission the participant was asked to investigate an unidentified watercraft in Scenario A and a 
suspicious vehicle in Scenario B. Each experimental scenario was 60 minutes long and had an 
initial period of normal base defense operations lasting about 30 minutes, followed by an 
intruder event that lasted about 15 minutes, followed by a resumption of normal base defense 
operations for the final 15 minutes.  

During the mission, the SO (played by a member of the research team) acknowledged 
participant actions and took images from the sensor feeds as required. For example, if the 
participant called a point inspect play to investigate an unidentified watercraft, he or she would 
radio the SO and inform him or her of the play and the SO would acknowledge this play via the 
radio and then take an image of the watercraft once the UxV arrived and send it to the 
participant. The SO, depending on what the script called for, either gave the all clear after the 
image was taken (thus implicitly instructing the participant to return the asset to patrol) or stated 
that the all clear had not yet be given (thus implicitly instructing the participant to keep the UxV 
on task). If the participant asked the SO about the status of non-SO related task, the SO would 
advise the participant to check his or her chat. For example, if the participant asked the SO if the 
unidentified watercraft had been imaged, the SO would reply with a yes or no. If the participant 
asked if the gate runner had been apprehended the SO instructed the participant to check his or 
her chat window. 

The TOC operator, played by another member of the research team did not interact with 
the participant during the mission. However, the TOC was responsible for ensuring pre-scripted 
events occurred and injecting pre-scripted events as needed. For example, if the script called for 
the UxV that was conducting a point inspect to lose its sensor feed, it was impossible to know 
which UxV the operator would assign to the task a priori. Once the operator had selected the 
UxV for the task, the TOC would disable that UxV’s sensor feed on the fly. 
 
5.2.1.5 Procedure.  
 

The study took place over two days. On day one participants were trained on the base defense 
mission as well as how to use Baseline and IMPACT. Participants completed experimental trials 
on day two.  
 
Day 1: Training. Participants were briefed on the goals and purpose of the study, signed an 
informed consent form, and were given a safety briefing. Next, participants completed a 
background questionnaire that collected basic demographic information (age, gender), unmanned 
vehicle operations experience, manned flight experience, and base defense experience. 
Participants were then seated at the C2 Operator Station to begin training. Training consisted of 
the lead experimenter instructing the participant how to perform specific actions using IMPACT 
and Baseline. Once a particular capability or function had been trained, the participant was sent a 
series of questions/tasks to accomplish via chat to ensure that he or she had been sufficiently 
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trained before moving on to the next topic. For example, once a participant had been trained on 
how to manipulate the map, chat messages were sent asking him or her to pan, zoom, and rotate 
the map using the mouse and the touchscreen.  

Participants were first trained on the base defense mission they would be supporting, 
beginning with a description of the base and their role in the upcoming mission. Participants 
were also given a paper map of the base that they had access to for the duration of the 
experiment. The experimenter then provided a briefing on the capabilities of the UxVs and 
instructed participants how to compare across the UxVs to determine which UxV to use in 
specific environmental conditions, when a specific optimization (e.g., optimize for crowd 
control) was required, or when a specific payload was needed. Next, participants were trained on 
the types of tasks they were responsible for performing (e.g., patrols, RAMs, normal base 
defense events, intruder event, commander queries, vehicle failures, environmental events) 
during the mission and the correct response for each. Participants were also told how they would 
be evaluated for each task (e.g., “For commander queries, your performance will be evaluated on 
the time it takes you to respond as well as the accuracy of your response”).  

Once participants had been trained on the mission and the UxV capabilities, they were 
trained on the functionality shared across IMPACT and Baseline including map movement, map 
decluttering, chat, vehicle dashboard, vehicle summary panel, media manager, and help. 
Participants were then given a high-level overview of the autonomous systems, including the 
UxAS, the intelligent agent, the Plan Monitor, the Task Manager, and the voice recognition 
system.  

Next, participants were trained on Baseline, and how to use the system to respond to each 
possible type of mission event. After a break, participants completed a sixty minute Baseline 
capstone mission, equivalent in complexity to a low complexity experimental scenario. During 
the capstone mission the lead experimenter answered any questions the participant had, pointed 
out any errors the participant made, and suggested better methods for accomplishing tasks. After 
the mission, participants filled-out a digitized version of the NASA-TLX in order to understand 
what to expect during data collection trials. 

After a break for lunch, the participant was trained on IMPACT, including the voice 
recognition system, the Play Calling interface, the Play Workbook, the Active Play Manager, the 
COA Planner, and the Task Manager. Participants were then given an opportunity to respond to 
each possible mission event using IMPACT. After a break participants completed a sixty minute 
IMPACT capstone mission, equivalent in complexity to a low complexity experimental scenario. 
Just as during Baseline capstone, the lead experimenter answered any questions the participant 
had, pointed out any errors the participant made, and suggested better methods for accomplishing 
tasks. Once again, participants completed the NASA-TLX after the mission. 
 
Day 2: Experimental Trials. On the second day, participants completed four sixty minute 
experimental trials blocked by system. Participants were given refresher training before each 
block. Refresher training consisted of the participant being asked to respond correctly to chat 
requests for each RAM, each normal base defense event, each intruder event, each commander 
query type (time to get a specific vehicle to a specific location, time to get a specific capability to 
a specific location, time to get a specific task in place, vehicle speed, vehicle altitude, what a 
vehicle was doing, and what vehicle was doing/had done a specific task), sensor and vehicle 
failures, environmental events, and ROZs.  
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Once refresher training was completed participants were given a paper copy of the RAMs 
they were responsible for conducting in the first trial and given as much time as they needed to 
develop a plan for executing the RAMs. When the participant was ready, the lead researcher 
counted down (“Three, two, one, GO!”) and the mission began. During the mission the lead 
researcher sat alongside the participant and observed his or her actions. The lead experimenter 
did not intercede unless the participant encountered a software bug or to prevent a participant 
from crashing the system due to a known bug. Both the lead experimenter and the TOC operator 
recorded how well participants did on each mission task to supplement Fusion’s data logs. A 
software tool called Camtasia was used to record the Sandbox screen and well as all voice 
commands and radio calls the participant made during the mission. 
 
5.2.2 Performance Measures 
 

Subjective Measures. After each trial participants completed the NASA-TLX. After each block 
participants completed a tool specific overall questionnaire, a tool specific usability scale, and a 
tool specific component questionnaire. After the participant had completed both blocks, he or she 
filled out a questionnaire comparing IMPACT to Baseline across mission tasks.  
 
Objective Measures. Performance data for each type of mission event (RAMs, Normal Base 
Defense Events, Intruder Events, Vehicle Failures and Environmental Events, and Commander 
Queries) were collected. For RAMs, participants were scored on how many RAMs they 
accomplished correctly (i.e., met all the constraints for) during the course of the mission. For 
Vehicle Failures and Environmental Events, participants were scored on how many they 
responded to correctly. Both accuracy and response time (the time the query was sent to the 
participant’s chat window until the participant replied via chat) data was collected for 
Commander Queries.  

For Normal Base Defense Events and Intruder Events both outcome (i.e., was the 
response to the event accomplished correctly) and process (i.e., did the participant select the 
correct location/target, correct play, the optimal vehicle, and meet the event’s constraints) data 
were collected. For example, imagine that a participant, in response to a task to provide an escort 
for Convoy Kilo before Convoy Kilo left the gate at 22:00, called an overwatch for Convoy Kilo 
that wasn’t in place until 23:00. In this case the outcome score would be 0 because the 
participant called the wrong play (an overwatch instead of an escort) and was late getting the 
play in place. However, the process score would be 0.5 because the participant called the play on 
the right target (Convoy Kilo) and picked an appropriate UxV (each component of the process 
score was equally weighted). Analyzing the data in this fashion provided information that was 
both mission relevant (i.e., did the mission get accomplished?) and diagnostic of where the 
process may have broken down (e.g., participants often failed to respond correctly to a specific 
event because they had trouble identifying the optimal vehicle to use).  

Response time was not analyzed for mission events because direct comparisons between 
conditions were not possible. For example, in the Baseline Low Complexity scenario a 
participant may not have even attempted to respond to a particular event, while responding to the 
same event in the IMPACT Low Complexity scenario. Instead, the time and number of mouse 
clicks from when a participant began to call a play (e.g., click a play icon) until the play was 
executed (e.g., hit the check mark) was analyzed. 
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5.2.3 Results 
 

5.2.3.1 Subjective Measures 
 

Overall Ratings. Participants used a 5-point Likert scale (ranging from No Aid to Great Aid) to 
rate IMPACT and Baseline across three measures: potential value to future UxV operations, 
ability to aid operator workload in future UxV operations, and ability to aid SA in future UxV 
operations. The data was analyzed using a paired samples t-test. IMPACT was rated significantly 
higher than Baseline for both potential value to future UxV operations, t(7) = 3.99, p = .005, d = 
1.99 and ability to aid workload t(7) = 5.35, p = .001, d = 5.86 (Figure 34). In fact, all eight 
participants gave IMPACT the highest possible rating when asked about IMPACT’s potential 
value to future UxV operations and seven out of eight participants gave IMPACT the highest 
possible score when asked about IMPACT’s ability to aid workload in future UxV operations. 
No significant difference was found for the ability to aid SA, t(7) = 1.49, p = .18, d = 0.54 
(Figure 34).  

 
 

Figure 34: Overall Ratings for IMPACT and Baseline 
 
System Usability. The overall usability of each tool was assessed using the SUS (Brooke, 1996). 
The SUS asks participants to evaluate 10 items related to system usability using a 5 point Likert 
scale ranging from Strongly Agree to Strongly Disagree, and these 10 items contribute to an 
overall SUS score. Participants rated IMPACT higher than Baseline on every single SUS item. 
The overall SUS scores were compared using a paired samples t-test. IMPACT’s overall SUS 
score was significantly higher than Baseline’s overall SUS score, t(7) = 2.73, p = .03, d = 0.97 
(see Figure 35). 
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Figure 35: Mean SUS Score for IMPACT and Baseline 
 
IMPACT vs. Baseline. After the experimental trials were completed, for each mission task, 
participants were asked to rate whether they performed the task better with IMPACT or better 
with Baseline. Participants rated their performance as better with IMPACT as compared to 
Baseline for every single mission task. Participants were also given the opportunity to comment 
on the differences between IMPACT and Baseline. Two participants elected not to comment. Of 
the remaining six participants, five were very positive about IMPACT as compared to Baseline. 
A single participant gave IMPACT a mixed review stating that although his or her performance 
was better with IMPACT, he or she had better SA and confidence with Baseline. 
 
NASA-TLX Workload. Participants completed the NASA-TLX to assess their perceived workload 
after each experimental trial. Data were analyzed with a repeated measures Analysis of Variance 
(ANOVA). No significant interaction between tool and complexity was found, (F(1,7) = 2.57, p 
= .15, ηp2 = .27). The results indicated a main effect of complexity (F(1,7) = 17.06, p = .004, 
ηp2 = .71), with participants rating workload lower in the Low Complexity condition (M = 
36.72) than in the High Complexity condition (M = 58.54). The results did not indicate a main 
effect of tool (F(1,7) = 4.08, p = .08, ηp2 = .27, IMPACT M = 43.28, Baseline M = 51.98). 
 
5.2.3.2 Objective Measures 
 

Participants performed significantly better with IMPACT across multiple performance measures 
including the number of RAMs completed and the process score for both Normal Base Defense 
Events and Intruder Events. Table 6 provides a summary of results comparing IMPACT to 
Baseline across objective performance measures.  
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Table 6: Evaluation Summary (IMPACT vs Baseline). 
Measure IMPACT > Baseline 

Objective Measures 
IMPACT 

> 
Baseline 

High 
Complexity 

 < 
Low 

Complexity 
Rams Completed Correctly * ** 

Normal Base Defense Outcome 
Measure 

  

Normal Base Defense Process 
Measure * ** 

Intruder Events Outcome 
Measure 

 ** 

Intruder Events Process Measures ** ** 
Response to System 

Failures/Environmental Events 
 ** 

Commander Query Accuracy  ** 
Commander Query Response 

Time 
  

Time to Call Plays   
Number of Clicks to Call Plays **  

*   significant at .05    
** significant at .01   

 
Despite failing to reach an alpha level of .05 for the Normal Base Defense and Intruder 

Outcome Measures, the overall pattern of the results indicates a similar trend as the process 
measures. In fact, the pattern of results indicated in Figure 36 for RAMs Completed Correctly 
was the same for Normal Base Defense Outcome and Process Measures, Intruder Events 
Outcome and Process Measures, and Commander Query Response Time. Additionally, the 
results indicated that participants performed better in the Low Complexity condition as compared 
to the High Complexity condition across almost all performance measures.   

 For Commander Query Response Time (shown in Figure 37) a significant interaction 
(F(1,7) = 6.39, p = .04, ηp2 = .48) was found. In the Low Complexity condition participants 
were faster at answering queries with IMPACT as compare to Baseline. However, in the High 
Complexity condition participants answered commander queries faster with Baseline as 
compared to IMPACT.   
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Figure 36: Percentage of RAMs Completed Correctly 
 

 
 

Figure 37: Commander Query Response Times 
 

At first, the results of this analysis were perplexing—why were participants faster at 
answering queries with Baseline in the High Complexity condition? Upon examining the video 
recordings of the high complexity trials an interesting pattern of behavior emerged. In the high 
complexity scenarios, some participants using IMPACT would often set commander queries 
aside in order to focus on higher priority tasks (i.e., Normal Base Defense Events or Intruder 
Events) and return to the query later. In contrast, in the Baseline condition, these participants 
would immediately answer the query instead of responding to the higher priority tasking. It 
appeared as if some participants in the Baseline condition were relieved when a commander’s 
query came in asking them, “What’s TR-22’s Speed?” in a high complexity scenario because it 
was an easy task that they knew how to answer. IMPACT, on the other hand, seemed to help 
participants prioritize tasks and enabled them to have discretionary control. The performance 
data supports this hypothesis. In Figure 38, each participant’s average process score for Normal 
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Base Defense Events and Intruder Events is mapped on the y axis, while response time to 
commander queries is mapped on the x axis. Baseline data is coded blue and IMPACT data is 
coded red. Note, that of the Top 10 average process scores, 8 of them occur when the participant 
was using IMPACT. Also note that though three participants (1, 2, and 4) had noticeably slower 
mean query response times with IMPACT, all three had higher average process scores with 
IMPACT.  

 
 

Figure 38: Commander Query Response Time vs. Process Score 
 
5.2.4 Discussion 
 

The hypothesis that participants would both prefer and perform better with IMPACT as 
compared to Baseline was supported. Participants preferred IMPACT as compared to Baseline 
on multiple subjective measures including usability, perceived value to future UxV operations, 
and ability to aid workload. Participants also performed better with IMPACT as compared to 
Baseline on multiple objective measures including number of RAMs completed and the process 
score for both Normal Base Defense Events and Intruder Events. 

The hypothesis that Operator performance would be worse in the high complexity 
missions as compared to low complexity was supported, with participants performing better in 
the low complexity missions across almost all performance measures. However, the hypothesis 
that the performance difference between IMPACT and Baseline would be significantly greater in 
the High Complexity condition was not supported. Several factors may account for this including 
a lack of statistical power due to the small number of participants as well as limiting the 
experiment to two levels of complexity.  

This research effort had multiple limitations. First and foremost, this study was limited to 
a small number of participants due to budgetary, time, and availability constraints. The small 
number of participants reduced the statistical power of the study. For example, the outcome 
measure difference between IMPACT and Baseline for both Normal Base Defense Events and 
Intruder Events was not significantly different despite a seemingly large difference in the means.  

At the beginning of this research effort it was determined that the advantages of using 
participants with real world experience would outweigh the negatives. One of the negatives was 
the lack of time to train participants. In the operational world, a Warfighter would have far more 
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time to learn the tool—two weeks instead of a single day—before needing to use the tool in a 
real-world mission. Unfortunately, it was extremely difficult to find active-duty participants who 
could donate two days of their time let alone two weeks. It is unreasonable to expect that 
participants could expertly wield all of IMPACT’s functionality after a single day of training. In 
fact, certain results, such as participants not using the voice recognition system to call plays, may 
be directly tied to a lack of training. Valuable future research would include replicating this 
experiment with extensively trained participants, and it would be valuable even if these 
participants were not military professionals.       
 
6 LOOKING BACK 
 

Now that the IMPACT project has completed, it’s appropriate to reflect on the approach taken 
and major decisions made. Many things worked and some things did not. One thing that very 
much worked was the time taken to meet face-to-face and plan the first year of the program. 
Although that was definitely the ‘storming’ phase of the effort, as we were from many different 
disciplines and had different areas of interest, we were able to work through these differences 
over a several day period to form the foundation of a workable architecture and plan for 
development. This process carried over to similar technology interchange meetings at the 
beginning of Year 2 and Year 3, all of which were valuable. An occasional mid-year meeting 
also occurred to keep the team in sync. 

Communication truly is critical to working in large, interdisciplinary, distributed groups 
towards a unified product. And these communications were best facilitated when it occurred 
frequently, and when it occurred ‘face-to-face’. This type of communication also fostered the 
building of deeper relationships that are foundational to many successful teams.  

We had also set a goal for all sub teams to integrate their technology into the IMPACT 
functional testbed by the end of the project. This goal was only partially realized however. While 
most technology was indeed integrated with integration continuing to develop over the lifespan 
of the project, certain aspects (i.e., human models, machine learning) were not. This was due in 
large part to the comparative lack of maturity associated with those technologies; they were still 
at the foundational science level.  

Additionally, it needs to be acknowledged that some scientists may simply be less 
inclined to tightly collaborate, likely for a myriad of reasons (past experience, dilution of focus, 
lower efficiency, etc.). It’s best for the whole for that to be acknowledged early so that the 
integrated aspects of any project can continue forward with a coalition of only the willing.  

The ARPI process, by and large, forced researchers out of their comfort zone and into 
interactions with scientists and technologies they were largely unfamiliar with but were critical 
to an overall systems solution to effective human-autonomy applications. And it forged 
relationships between researchers that will continue long after the ARPI process ends. Many 
IMPACT researchers commented that this project was the most rewarding project they had ever 
worked on, which is firm evidence that the process worked in this case. 

Finally, the approach that ASD/R&E took towards managing the ARPI process should be 
lauded. They could have chosen a micro-management style that burdened the research teams 
with numerous reporting requirements. However the approach taken, that of quarterly reports, 
streamlined financial reporting, and detailed yearly reviews, enabled the ARPI teams to 
maximize time on technical matters. 
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7 RETURN ON INVESTMENT 
 

The ARPI Program provided an excellent opportunity for Service lab researchers to collaborate 
on joint projects on autonomy. During the three years, these researchers gained significantly 
better understanding of each other’s expertise and capabilities. Collectively, the IMPACT team 
has pushed the boundary of human-autonomy teaming science and technologies. With the 
knowledge gleaned from the IMPACT project and ARPI as a whole, the United States has been 
able to continue the trend of creating cutting edge technologies. Such technologies are 
particularly useful for military use, but may also provide a foundation for future research in 
civilian contexts as well. Below are some tangible examples on return on investment associated 
with the IMPACT project. 
 
7.1 Delivering System-Level Innovations 
 

The IMPACT project directly demonstrated human-autonomy teaming (HAT) innovations that 
were empirically proven to be superior to a state-of-the-art Baseline system via an extensive 
evaluation. Eight subject matter experts completed a variety of defense mission related tasks 
involving twelve simulated UxVs. Completion of these tasks was enhanced by our novel 
implementation of a play-calling approach, context-specific intelligent decision aiding, and 
advanced routing algorithms. Besides employing concise video-gaming type symbology 
throughout the interfaces, the approach was innovative in terms of providing a comprehensive 
suite of play-based interfaces that provided intuitive and efficient means by which the operator 
could team with C2 autonomy. Specifically, the interface supported capturing the operator’s 
intent, allocating UxVs to tasks, routing UxVs, and editing on-going plays. The interfaces also 
provided visibility into the autonomy’s reasoning, highlighted the tradeoffs of autonomous-
generated plans and communicated ongoing play progress. With the intelligent aiding, 
cooperative routing, and well-integrated play workflow, participants’ task performance was 
significantly improved on multiple mission performance metrics with the IMPACT system in 
comparison to the Baseline system. Participants were also able to execute plays using 
significantly fewer control inputs with IMPACT as compared to Baseline. Participants rated 
IMPACT higher than Baseline on all possible usability metrics. Participants also subjectively 
rated IMPACT significantly better than Baseline in terms of its perceived value to future UxV 
operations as well as its ability to aid workload. 

This system innovation will continue at multiple research sites due to the creation of a 3-
station DoD VDL for HAT-related research. Research is extending along several research fronts, 
all making maximal use of this important testbed.  
 
7.2 New Software Products 
 

This effort has produced several software products and numerous research results that are key for 
developing future human-autonomy systems. In terms of software, significant effort was put into 
developing Fusion. Fusion both implements a base set of capabilities that are necessary for 
building the core of any human-autonomy system, and it provides an extensible architecture that 
allows new autonomy capabilities to be rapidly incorporated. We believe Fusion therefore 
represents an invaluable framework for developing and testing new human-autonomy concepts 
and will pay great dividends when used by others in the DoD.  

Similarly, other software components such as UxAS provide foundational autonomy 
capabilities that could serve as fundamental building blocks for autonomy research and future 
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DoD autonomy systems. For example, UxAS provides a core set of task routing and online 
execution capabilities needed by many physical, mobile systems, and like Fusion, it is designed 
to be extensible. UxAS is now publically available on GitHub and is currently the subject of 
AFRL's Summer of Innovation program. In this program, over 30 participants from NASA, 
Rockwell Collins, GE, CMU's Software Engineering Institute, and other industrial and academic 
partners are using UxAS as a case study for current and future V&V approaches. This will both 
spur future research and harden UxAS so that it can be confidently used in programs such the 
AFRL Loyal Wingman program, which aims to augment a manned fighter with unmanned 
teammates. 
 
7.3 Research Results 
 

In addition to new software that provides foundational capabilities for human-autonomy systems, 
new research results provide insights that are key for improving human-autonomy teaming. Over 
60 publications, covering a range of topics from human autonomy interaction, artificial 
intelligence, computer science, human workload and attention modeling, etc. have been 
produced as a result of the IMPACT program (See Appendix A). These publications include 
conference papers and journal entries. In addition, an entire symposium was dedicated to 
IMPACT research at the 2017 International Symposium of Aviation Psychologists.  
An innovative model of agent transparency (Situation Awareness of Agent Transparency-SAT) 
was developed and demonstrated to improve an operators’ ability to reduce misuse and disuse of 
agents’ planning and asset management decisions. By informing the human of the agent’s intent, 
logic and predicted outcome uncertainty, the SAT model enabled a true synergy between the 
agent’s ability to suggest solutions and the human’s ability to adapt solutions to the current 
tactical situation.      

A model was successfully developed of when a human supervisor may be performing 
poor visual scanning. Poor visual scanning leads directly to missed automation failures, which 
was operationally defined as critical for this effort. This meta-knowledge model is predictive, it 
runs in real-time, and has high accuracy.  
Machine learning approaches were applied toward evolutionary learning of tactics with human 
inputs, and the automatic generation of new tasking. This foundational research can potentially 
result in major leaps in future IMPACT capabilities. 
 
7.4 Reducing Cost 
 

The IMPACT project demonstrated the potential to reduce future DoD costs by reducing the 
number of personnel required to manage multiple UxVs. This was directly illustrated for the 
application of future base defense by augmenting human management with IMPACT’s agility-
enhancing technologies. However, these technologies can easily be extended to other RSTA 
applications and even beyond.             
 
7.5 Ensuring Trust  
 

Trust was directly investigated through a series of experiments in the IMPACT project. We were 
able to show the ability of SAT information to calibrate trust (reduce misuse and disuse) and to 
improve subjective trust in the IMPACT system as well. The SAT model improved the 
operator’s ability to correctly override the agent’s misuse of multiple autonomous systems based 
on sub-optimal mission profiles while increasing trust in the agent’s decisions when supported 



 

87 
DISTRIBUTION STATEMENT A:  Approved for public release.                                             Cleared, 88PA, Case# 2018-0820. 

by the current tactical situation. In addition, HMI efforts focused on creating transparency 
throughout the IMPACT interface so that the operator could properly calibrate trust. 
 
7.6 Disrupting Advanced Persistent Threats  
 

Terrorist’s threat against military and civilian installations are becoming ubiquitous. 24/7 use of 
autonomous systems informed by IMPACT related agility tools offers a cost effective and 
practical means of protecting large scale installations and urban terrain.     
 
7.7 Collaborations/Extensions/Fostering New Opportunities  
 

The technology development and collaborations initiated during the ARPI process are being 
leveraged for future efforts. The IMPACT Virtual HAT testbed has already proven to be a key 
enabler for jumpstarting new research and fostering new joint service collaboration. Below are a 
few examples of how the IMPACT project has extended into new research areas and advanced 
technology development, within the DoD, Industry, Academia, and internationally. 
DoD: 

• DARPA (including CODE and Explainable AI programs) 
• Research on optimal human-autonomy teaming structures and communication 

requirements 
• AFRL Autonomy Initiative on manned/unmanned teaming for air operations 
• “Autonomy at Rest” framework for multi-domain C2 applications 
• Dynamic operator workload prediction and augmentation strategies 
• Multiple University Research Initiative to develop transparency related concepts with 

NRL, AFRL 
 

Industry: 
• Operator performance sensing, assessing, and augmenting to dynamically balance 

workload 
• Augmenting team performance in distributed operations 
• Assessing complex contextual attention and dynamic engagement 
• Cognitive assessment model and enhanced workload models for HAT 
 

Academia: 
• Transparency interfaces to evaluate UAV swarms 
• Causes and mitigations for decision biases 
• Multiple University Research Initiative to develop transparency related concepts with 

NRL, AFRL 
 

International: 
• TTCP Autonomy Strategic Challenge: Multi-nation autonomy co-development, 

integration, and assessment in live-virtual exercises. IMPACT selected as the core C2 
autonomy component and will combine its capabilities with those of other nations to 
produce a more robust and mature C2 capability. 

• NATO-HFM-247: IMPACT used to inform HAT metrics and HAT design pattern 
development 
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Looking forward, there are many emerging opportunities for extending the technology and 
understanding developed within IMPACT. Many of these opportunities are documented within 
the “Next Steps” subsections within Sections 4.0 and 5.0. A few additional ideas follow.  

• A systematic exploration of communication degradations and information uncertainty on 
HAT performance. Starting with IMPACT and the assumption of perfect knowledge and 
continuous communications, research is needed explore how communication links and 
mission information might be degraded, what the effects are on HAT performance, and 
what mitigation methods work the best to maintain overall system performance. The 
IMPACT testbed is a perfect baseline by which to study this problem area; data already 
exists on HAT performance in perfect/continuous communication environments, and 
mitigation exploration can entail countless combinations of machine reasoning, multiple 
cooperative mission planning methods, and advanced HMI solutions.  

• A more in-depth implementation and study of the results of implementing HAT patterns 
identified in NATO HFM-247. For instance, IMPACT Agent might alter its behavior 
based on priority of plays. The Task Manager could adapt based on task due time. 
However a more robust change could occur as tasks become close to key decision 
deadlines, increasing the use of automation as the human operator is unable to address 
tasks in time. A wide variety of responses are possible and could be controlled via 
working agreements with the operator. 

• A plug-and-play architecture for planners with hierarchical planning to increase the 
ability to handle diverse autonomous assets and handle multiple levels of detail. 
Hierarchical planning which is considered one of the best possibilities for handling 
increased complexity will add challenges to the operator that will need to be explored. 
Hierarchical planning will allow the combination of probabilistic and constraint-based 
planning at different levels. Including probabilistic planning will also require HAT 
studies relative to these planners. 

 
8 LOOKING FORWARD AND CONCLUSION 
 

The IMPACT project produced significant knowledge in a number of areas important to 
autonomy-related capabilities (see Appendix A for a listing of the many publications generated 
from this effort). Not only did the project spur advancements in component technology 
development, model development, and general design understanding/guidance, but much was 
learned from the integration of key autonomy-related technologies into a single multi-UxV 
control station application. IMPACT also produced a robust DoD “virtual lab” for continued 
human-autonomy teaming research. This was a key objective of the ARPI process. A three-
station system (C2, sensor operator, & TOC) is available for organic wide-spectrum HAT 
evaluations with sites currently at AFRL, SPAWAR and ARL. Moreover, the IMPACT system 
breaks new ground in terms of enabling C2 of heterogeneous unmanned vehicles from the same 
control station. This is accomplished with the innovative autonomy teaming interfaces that 
enable the operator to seamlessly transition between many control states (from manual to fully 
autonomous), supporting the agility required for future Air Force missions.  

This new vision for future human-autonomy systems was successfully conveyed to DoD 
senior leadership via many interactive demonstrations of the IMPACT system. This vision 
clearly illustrates that the human will continue to have a prominent role in interacting with 
increasingly autonomous technology, dynamically flexing between supervisor, teammate, or 
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manual controller as conditions dictate. Finally IMPACT technologies have 
extended/transitioned in a myriad of ways. Other ARPI projects have leveraged IMPACT 
technology to advance their aims while new DoD projects (including JCTD and DARPA 
programs) and several industry contractors now utilize IMPACT generated capabilities in 
technology development efforts. Additionally, IMPACT has become the core C2 autonomy piece 
within the TTCP Autonomy Strategic Challenge which is a 3-year, 5-nation effort to integrate 
and assess promising allied interoperable autonomy capabilities in mixed live/virtual multi-UxV 
littoral environments.  

The IMPACT project has enabled a deeper exploration into the critical issues that 
influence flexible and effective human-autonomy collaboration. Although the IMPACT 
evaluation demonstrated value in several aspects related to operator-autonomy teaming, several 
deficiencies and gaps in understanding were also identified and improvements are underway. 
These include research related to novel methods for enabling bi-directional communication and 
management of temporal constraints, more naturalistic dialogue and sketch interactions, and 
consideration of information uncertainty in decision-making tasks. Additionally, research 
investigating the effects of decentralized re-planning capability, real-time operator functional 
state assessment, and alternative team structures on overall human-autonomy teaming. The 
results of these follow-on efforts will provide a much richer understanding of this area.  
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